Considering the peculiar geography of Shanghai, the influences of the complicated underlying surface on the initiation and development of early-afternoon summer convections is an important topic in short-range weather forecasts. Firstly, using automatic weather station observations of Shanghai from 1994 to 2012, the temporal and spatial distributions of the local severe convections and the characteristics of the Urban Heat Island (UHI) in Shanghai summer were studied, after that, using observations from near-surface dense observation network, the role of UHI, sea breeze, lake breeze in the initiation and development of the ‘0731' local severe convection event was analyzed and discussed. The results indicated that the zone of UHI in Shanghai was expanding. The frequency of severe convection in Shanghai summer was increasing and these severe convections mostly occurred in downtown area and regions along rivers or lakes. Due to the Shanghai UHI effects, the boundary layer jet was preserved, the appearance of sea breeze and lake breeze brought moisture to Shanghai area, while the superposition of the UHI effects accelerated the accumulation of unstable energy and the enhancements of the updrafts, once the surface convergence line in downtown area was formed due to the sea breeze effects, the trigger of unstable energy releasing was turned on and the development of the convections was enhanced further.
WANG Xiaofeng
,
XU Xiaolin
,
ZHANG Lei
,
WANG Ping
,
XU Tong
. Observation Analysis of Local Severe Convection Event in Shanghai on 31 July 2011[J]. Plateau Meteorology, 2014
, 33(6)
: 1627
-1639
.
DOI: 10.7522/j.issn.1000-0534.2013.00204
[1]Huff F A, Changnon S A. Urban effects on daily rainfall distribution[C]. Preprints, Second National Conf. on Weather Modification, Santa Barbara, CA, Amer Meteor Soc, 1972: 215-220.
[2]Huff F A, Changnon S A. Precipitation modification of major urban areas[J]. Bull Amer Meteor Soc, 1973, 54: 1220-1232.
[3]Bornstein R D, Lin Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies[J]. Atmos Environ, 2000, 34: 507-516.
[4]Diem J E, Mote T L. Interepochal changes in summer precipitation in the southeastern United States: Evidence of possible urban effects near Atlanta, Georgia[J]. J Appl Meteor, 2005, 44: 717-730.
[5]Yoshinori S. Retrieval of water vapor inhomogeneity using the Japanese nationwide GPS array and its potential for prediction of convective precipitation [J]. J Meteor Soc Japan, 2013, 91: 43-61.
[6]杨露华, 叶其欣, 邬锐, 等. 基于GPS/Pwv资料的上海地区2004年一次夏末暴雨的水汽输送分析[J]. 气象科学, 2006, 25(5): 502-508.
[7]尹红萍, 曹晓岗. 盛夏上海地区副热带高压型强对流特点分析仁[J]. 气象, 2010, 36(8): 19-25.
[8]漆梁波, 陈雷. 上海局地强对流天气临近预报要点[J]. 气象, 2009, 35(9): 11-18.
[9]顾问, 路璐, 施春红, 等. 上海盛夏连续清晨对流天气过程的边界层结构分析[J]. 大气科学研究与应用, 2011, 2: 55-62.
[10]孙继松. 北京地区夏季边界层急流的基本特征及形成机理研究[J]. 大气科学, 2005, 29(3): 445-452.
[11]梁军, 张胜军, 石小龙, 等. 2010年8-10月辽东半岛暴雨过程的中尺度特征分析[J]. 高原气象, 2012, 31(5): 1320-1331.
[12]王彦, 于莉莉, 李艳伟, 等. 边界层辐合线对强对流系统形成和发展的作用[J]. 应用气象学报, 2011, 22(6): 724-731.
[13]赵金霞, 徐灵芝, 卢焕珍, 等. 盛夏渤海湾大气边界层辐合线触发对流风暴对比分析[J]. 气象, 2012, 38(3): 336-343.
[14]尹东屏, 吴海英, 张备, 等. 一次海风锋触发的强对流天气分析[J]. 高原气象, 2010, 29(5): 1261-1269.
[15]李青春, 苗世光, 郑祚芳, 等. 北京局地暴雨过程中近地层辐合线的形成与作用[J]. 高原气象, 2011, 30(5): 1232-1242.
[16]赖绍钧, 何芬, 陈海山, 等. 华南前汛期福建一次致洪暴雨过程的中尺度结构特征[J]. 高原气象, 2012, 31(1): 167-175.
[17]吴海英, 曾明剑, 尹东屏, 等. 一次苏皖特大暴雨过程中边界层急流结构演变特征和作用分析[J]. 高原气象, 2010, 29(6): 1431-1440.
[18]张艳, 鲍文杰, 余琦, 等. 超大城市热岛效应的季节变化特征及其年际差异[J]. 地球物理学报, 2012, 55(4): 1121-1128.
[19]陶诗言等. 中国之暴雨[M]. 北京: 科学出版社, 1980: 8-11.
[20]丁一汇. 高等天气学[M]. 第2版. 北京: 气象出版社, 2005: 318-320.
[21]朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法[M]. 第3版. 北京: 气象出版社, 2000: 396-398.