The temporal and spatial characteristics of vapor in Dalian by using the PWV inversed by GPS during 2010-2012 were analyzed. The results showed that the data of GPS/PWV can reflect the change of vapor in atmosphere. The spatial distribution of PWV was the evenly in Dalian area. The monthly mean PWV was maximum in July or August (43 mm), the minimum in January (4 mm). The range of daily variation of PWV in Dalian was less than 0.5 mm in spring and winter, but more than 1 mm in summer and autumn. Daily variation of PWV showed single peak type in summer and autumn, but multi-peak in the other seasons. In flood season (from July to August), daily variation of PWV was significant negatively correlated with temperature, but positively correlated with relative humidity. During 06:00(Beijing Time, hereafter the same) to 15:00, temperature was increased gradually, while the atmospheric water vapor and relative humidity were decrease, and the decreased of PWV caused by water vapor transport was higher than the increased of PWV caused by evaporation. During 15:00 to 06:00 in next day, the result is opposite.
SHI Xiaolong
,
SHANG Lunyu
,
YIN Yuanyuan
,
HUANG Zhen
,
HUANG Ting
,
CHENG Hang
,
LI Hongqiang
. Variation Characteristics of Precipitable Water Vapor Inversed by GPS in Dalian[J]. Plateau Meteorology, 2014
, 33(6)
: 1648
-1653
.
DOI: 10.7522/j.issn.1000-0534.2014.00080
[1]Askne J, Nordius H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio Sci, 1987, 22, 3: 379-386.
[2]Baker H C, Dodson A H, Penna N T, et al. Groud-based GPS water vapor estimation: Potential for meteorological forecasting[J]. Journal of Atmospheric and Solar Terrestrial Physics, 2001, 63: 1305-1314.
[3]Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System[J]. J Geophys Res, 1992, 97: 15787-15801.
[4]Rocken C, VanHove T, Johmson J, et al. GPS/STORM-GPS sensing of atmospheric water vapor formeteorology[J]. J Atmos Ocean Technol, 1995, 12: 468-478.
[5]Duan J, Bevis M, Fang P, et al. GPS meteorology: Direct estimation of the absolute value of precipitable water[J]. J Appl Meteor, 1996, 35: 830-838.
[6]曹云昌, 方宗义, 夏青. 地空基GPS探测应用研究进展[J]. 南京气象学院学报, 2004, 27(4): 565-572.
[7]李延兴, 徐宝祥, 胡新康, 等. 用地基GPS观测站遥测大气含水量和可降雨量的理论基础与实验结果[J]. 中国科学, 2000, 30(增刊1): 107-110.
[8]梁丰, 李成才, 王迎春, 等. 应用区域地基全球定位系统观测分析北京地区大气总水汽量[J]. 大气科学, 2003, 27(2): 236-244.
[9]杨光林, 刘晶淼, 毛节泰. 西藏地区水汽GPS遥感分析[J]. 气象科技, 2002, 30(5): 266-272.
[10]宾振, 吴瑶, 邱璐, 等. 江西地基GPS遥感大气可降水量变化特征及精度[J]. 高原气象, 2013, 32(5): 1503-1509, doi: 10.7522/j.issn.1000-0534.2012.00140.
[11]姚建群, 丁金才, 王坚捍, 等. 用GPS可降水量资料对一次大—暴雨过程的分析[J]. 气象, 2005, 31(4): 48-52.
[12]曹云昌, 方宗义, 夏青. GPS遥感的大气可降水量与局地降水关系的初步分析[J]. 应用气象学报, 2005, 16(1): 54-59.
[13]杨莲梅, 王世杰, 史玉光, 等. 乌鲁木齐夏季降水强降水过程GPS-PWV的演变特征[J]. 高原气象, 2012, 31(5): 1348-1355.
[14]杨露华, 叶其欣, 邬锐, 等. 基于GPS/PWV资料的上海地区2004年一次夏末暴雨的水汽输送分析[J]. 气象科学, 2006, 25(5): 502-508.
[15]Zhai P, Eskridge R E. Atmospheric water vapor over China[J]. J Climate, 1997, 10: 2643-2652.
[16]Herring T A, King R W, McClusky S C. GAMIT reference manual(10.35)[Z]. Department of Earth, Atmospheric and Planetary Sciences, Massachussetts Institute of Technology, 2009: 183.
[17]UNAVCO TEQC tutorial. http://facility.unavco.org/software/teqc/tutorial.html, 2010.
[18]丁金才, 叶其欣, 黄炎, 等. 2002年汛期长江三角洲地区GPS观测大气可降水量的统计分析[M]. 大气科学研究与应用, 北京: 气象出版社, 2003: 26-34.
[19]李燕, 石小龙, 王树雄, 等. 2009年大连春季强对流雨雪天气过程分析[J]. 高原气象, 2011, 30(4): 961-968.
[20]梁军, 张胜军, 王树雄, 等. 大连地区一次区域暴雪的特征分析和数值模拟[J]. 高原气象, 2010, 29(3): 744-754.
[21]梁军, 张胜军, 石小龙, 等. 2010年8月810日辽东半岛暴雨过程的中尺度特征分析[J]. 高原气象, 2012, 31(5): 1320-1331.
[22]梁军, 李英, 隋洪起, 等. 两次大连春季暴雨的环流特征和诊断分析[J]. 高原气象, 2011, 30(5): 1243-1254.
[23]王玲玲, 王谦谦, 徐晓波, 等. 大连地区主汛期降水异常的气候特征分析[J]. 大连海事大学学报, 2005, 31(1): 105-108.
[24]Wu P, Kimura F, Sasaki T, et al. Diurnal variation of GPS-derived precipitable water over the Tibetan Plateau during summer[C]. International Workshop on GPS Meteorology, 2003: 3-28.