Analysis of Energy Balance Characteristics on Asphalt Pavement

  • ZHANG Zhongqiong ,
  • WU Qingbai ,
  • LIU Yongzhi ,
  • CHEN J
Expand
  • State Key Laboratory of Frozen Soil Engineering;cold andarid regions environmental and engineering research institute, Chinese Academy of Science, Lanzhou 730000, China

Received date: 2013-03-22

  Online published: 2014-12-28

Abstract

In order to analyze the differences and the reasons for the heat absorption of asphalt pavement and the natural surface, radiation, wind speed, air temperature, humidity, barometric pressure and shallow ground temperature was observed on the asphalt pavement and natural surface in Beiluhe area on the Qinghai-Tibet Plateau. Evaporation and turbulent heat of the two ground types are calculated using aerodynamic method. The results showed that: From May to September, the net radiation flux of natural surface is greater than the asphalt pavement; at the otherduration, the net radiation of asphalt pavement is greater than the natural surface. The net radiation of asphalt pavement is about 6.2% more than the natural surface. With the use of the asphalt pavement, the difference between them has a decreasing trend. The main cooling way is the turbulent heat in Beiluhe area. Latent and sensible heat flux of asphalt pavement is less than the natural surface; The difference was larger in summer and winter. Compared with the natural surface, the latent heat flux of asphalt pavement reduces by 24.4%, sensible heat flux reduces by 14.3%. Ground temperature at the shallow part of asphalt pavement was significantly greater than the natural surface. In 5 cm depth, ground temperature under asphalt pavement is higher than the natural surface of about 1.15~8.6℃. At 20 cm depth, ground temperature under asphalt pavement is about 0.1 to 5.6℃ higher than the natural surface. The asphalt pavement absorbs more heat than the natural surface, and the roadbed center position is greater than the right shoulder position. The asphalt pavement endothermic role is obvious.

Cite this article

ZHANG Zhongqiong , WU Qingbai , LIU Yongzhi , CHEN J . Analysis of Energy Balance Characteristics on Asphalt Pavement[J]. Plateau Meteorology, 2014 , 33(6) : 1705 -1711 . DOI: 10.7522/j.issn.1000-0534.2013.00143

References

[1]汪双杰. 高原多年冻土区公路路基稳定及预测技术研究[D]. 南京: 东南大学, 2005.
[2]韩子东. 道路结构温度场研究[D]. 西安: 长安大学, 2001.
[3]Oke T R, Spronken-Smith R A, Jauregui E, et al. The energy balance of central Mexico City during the dry season[J]. Atmos Environ, 1999, 33: 3919-3930.
[4]Grimmond C S B, Oke T R. Heat storage in urban areas: Iocal-scale observations and evaluation of a simple model[J]. J Appl Meteor, 1999, 38:922-940.
[5]王成刚, 孙鉴泞, 胡非, 等. 城市水泥下垫面能量平衡特征的观测与分析[J]. 南京大学学报: 自然科学版, 2007, 43(3): 270-279.
[6]沈志宝. 青藏高原地面总辐射的地理分布及其季节变化特征[J]. 高原气象, 1987, 6(4): 326-334.
[7]季国良.青藏高原能量收支观测试验的新进展[J]. 高原气象, 1999, 18(3): 333-340.
[8]王介民. 陆面过程实验和地气相互作用研究-从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3): 280-294.
[9]周万福, 周秉荣, 李晓东, 等. 青藏高原东部地区辐射平衡及个分量变化特征[J]. 高原气象, 2013, 32(2): 327-333, doi: 10.7522/j.issn.1000-0534.2012.00032.
[10]李亮, 张宏, 胡波, 等. 不同土壤类型的热通量变化特征[J]. 高原气象, 2012, 31(2): 322-328.
[11]王少影, 张宇, 吕世华, 等. 玛曲高寒草甸地表辐射与能量收支的季节变化[J]. 高原气象, 2012, 31(3): 605-614.
[12]杨耀先, 李茂善, 胡泽勇, 等. 藏北高原高寒草甸地表粗糙度对地气通量的影响[J]. 高原气象, 2014, 33(3): 626-636, doi: 10.7522/j.issn.1000-0534.2013.00199.
[13]吴晓鸣, 马伟强, 马耀明. 夏季藏北高原地表热通量特征观测与模拟[J]. 高原气象, 2013, 32(5): 1246-1252, doi: 10.7522/j.issn.1000-0534.2013.00082.
[14]肖瑶, 赵林, 李韧, 等. 青藏高原腹地高原多年冻土区能量收支各分量的季节变化特征[J]. 冰川冻土, 2011, 33(5): 1033-1039.
[15]王杰. 祁连山区能量物质输送及植被动态变化研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2011.
[16]黄以职, 郭东信, 王绍令. 青藏公路昆仑山垭口、斜水河路段路基热状态及稳定性研究[R]. 中国科学院兰州冰川冻土所, 1996.
[17]王绍令, 赵林, 李述训, 等. 青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究[J]. 冰川冻土, 2001, 23(2): 111-118.
[18]钱泽雨, 胡泽勇, 杜萍, 等. 青藏高原北麓河地区近地表能量输送与微气象特征[J]. 高原气象, 2005, 24(1): 43-48.
[19]张中琼. 多年冻土区沥青路面热效应机理研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2012.
[20]张林洪, 王苏达, 吴培关, 等. 沥青路面结构的渗透性能测试研究[J]. 中南公路工程, 2005, 30(3): 10-14
Outlines

/