Algorithm Design of Quality Control for Hourly Air Temperature

  • WANG Haijun ,
  • YAN Qiaoqiao ,
  • XIANG Fen ,
  • PAN Meng
Expand
  • Hubei Meteorological Information and Technology Support Center, Wuhan 430074, China;2. Hubei Meteorological Bureau, Wuhan 430074, China

Received date: 2013-01-02

  Online published: 2014-12-28

Abstract

Although range check based on month climatic extremes is one of the most commonly used data quality control methods for Automatic Weather Stations(AWS) data, if it is applied to quality control of hourly air temperature data, there exist two weaknesses: (1) The larger threshold range of climatic extremes can make some abnormal data undetected; (2) Large amount of newly built AWS has no climatic extremes. To improve these weaknesses, a range check method is developed based on hourly threshold, which is computed by day climatic extremes. In order to obtain the lower and upper limits of hourly air temperature threshold, firstly, the principles of time and spatial interpolation are applied to calculate the daily temperature extremes at any site based on the generalized extreme value distribution theory. Then, the computing method of hourly threshold at any site is designed by means of the daily change regularity of temperature and numerical interpolation technology. The daily maximum and minimum air temperature of total 730 AWS in China are applied to design and calculate the lower and upper limits of hourly air temperature threshold which can be used for nationwide. Meanwhile, the punctuality, maximum, minimum air temperature of hourly data produced by 2400 AWS located in the national scale in 2010 are used to demonstrate the effectiveness of our proposed control approach. The results show that the quality control method based on the range check of hourly threshold has a lower undetected rate compared with the daily or monthly climatic extremes check. Especially, it can be adopted by those stations without historical data. Its check results can be strengthened by combining with spatial consistency check to reduce the false detection rate greatly.

Cite this article

WANG Haijun , YAN Qiaoqiao , XIANG Fen , PAN Meng . Algorithm Design of Quality Control for Hourly Air Temperature[J]. Plateau Meteorology, 2014 , 33(6) : 1722 -1729 . DOI: 10.7522/j.issn.1000-0534.2014.00028

References

[1]Graybeal, Daniel Y, Arthur T DeGaetano,et al. Improved quality assurance for historical hourly temperature and humidity: Development and application to environmental analysis[J]. J Appl Meteor, 2004, 43: 1722-1735.
[2]Kenneth G H, You Jinsheng. Sensitivity analysis of quality assurance using the spatial regression approach-a case study of the maximum/minimum air temperature[J]. J Atmos Ocean Technol, 2005, 22: 1520-1530.
[3]You Jinsheng, Kenneth G H. Quality control of weather data during extreme events[J]. J Atmos Ocean Technol, 2006, 23: 184-197.
[4]Hubbard, Kenneth G, Nathaniel B G, et al. An improved QC process for temperature in the daily cooperative weather observations[J]. J Atmos Ocean Technol, 2007, 24: 206-213.
[5]Durre I, Menne M J, Gleason B E, et al. Comprehensive automated quality assurance of daily surface observations[J]. J Appl Meteor Climatol, 2010, 49: 1615-1633.
[6]Graybeal, Daniel Y, Arthur T D, et al. Complex quality assurance of historical hourly surface airways meteorological data[J]. J Atmos Ocean Technol, 2004, 21: 1156-1169.
[7]任芝花, 赵平, 张强, 等. 适用于全国自动站小时降水资料的质量控制方法[J]. 气象, 2010, 36(7): 123-132.
[8]王海军, 杨志彪, 杨代才, 等. 自动气象站实时资料自动质量控制方法及其应用[J]. 气象, 2007, 33(10): 102-109.
[9]陶士伟, 仲跻芹, 徐枝芳, 等. 地面自动站资料质量控制方案及应用[J]. 高原气象, 2009, 28(5): 1202-1209.
[10]王少影, 张宇, 吕世华, 等. 金塔绿洲湍流资料的质量控制研究[J]. 高原气象, 2009, 28(6): 1260-1273.
[11]廖捷, 熊安元. 我国飞机观测气象资料概况及质量分析[J]. 应用气象学报, 2010, 21(2): 206-213.
[12]任芝花, 刘小宁, 杨文霞. 极端异常气象资料的综合性质量控制与分析[J]. 气象学报, 2005, 63(4): 526-533.
[13]徐安伦, 李建, 刘辉志, 等. 大理国家气候观象台地面辐射观测数据的质量控制研究[J]. 高原气象, 2013, 32(5): 1432-1441, doi: 10.7522/j.issn.1000-0534.2012.00133.
[14]王轶, 徐枝芳, 范广洲. 基于EOF2m温度质量控制方法研究[J]. 高原气象, 2013, 32(2): 564-574, doi: 10.7522/j.issn.1000-0534.2012.00054.
[15]任芝花, 许松, 孙化南, 等. 全球地面天气报历史资料质量检查与分析[J]. 应用气象学报, 2006, 17(4): 412-420.
[16]任芝花, 熊安元, 邹凤玲. 中国地面月气候资料质量控制方法的研究[J]. 应用气象学报, 2007, 18(4): 516-523.
[17]王海军, 刘莹. 综合一致性质量控制方法及其在气温中的应用[J]. 应用气象学报, 2012, 23(1): 69-76.
[18]Hu Qi, Song Feng. A daily soil temperature dataset and soil temperature climatology of the contiguous united states[J]. J Appl Meteor, 2003, 42: 1139-1156.
[19]李雁, 周青, 周薇, 等. 中国不同气候区高、低温及强降水阈值[J]. 高原气象, 2013, 32(5): 1382-1388, doi: 10.7522/j.issn.1000-0534.2012.00129.
[20]Vesa H, Ari A. Automatic minimum and maximum alarm thresholds for quality control[J]. J Atmos Ocean Technol, 2011, 28: 74-84.
[21]陈元芳, 李兴凯, 陈民, 等. 可考虑历史洪水信息的广义极值分布线性矩法的研究[J]. 水文, 2008, 28(3): 8-13.
[22]刘小宁. 我国40年年平均风速的均一性检验[J]. 应用气象学报, 2000, 11(2): 28-34.
[23]翟盘茂, 任福民. 中国近四十年最高最低温度变化[J]. 气象学报, 1997, 55(4): 418-429.
[24]徐士良. 常用算法程序集(C语言描述)[M]. 北京: 清华大学出版社, 2004.
[25]Vejen F, Jacobson C, Fredrikson U, et al. Quality control of meteorological observations[R]. Automatic Methods Used in the Nordic Countries. Nordklim, Nordic Co-operation within Climate Activities, Report, 2002(8): 39-42.
Outlines

/