An extreme rainstorm has occurred in the midwestern of Gansu Corridor arid zone on 45 June 2012. Using the data of conventional and automatic weather stations, FY-2D satellite cloud image as well as NCEP 1°×1° reanalysis data, the impacts of influence system configuration, meso-scale characteristics, water vapor transport and unstable energy have been analyzed. The main results are as follows. After the ground cold front had passed, rainstorm happened, cooling condensation effect was significant. No convergence system formed on ground, while strong suction existed in upper troposphere; plateau low vortex which was blocked by its downstream weak ridge stayed longer over the rainstorm area in middle troposphere; a shear line could be found in low troposphere, the configuration of the upper and low influence systems provided meso-scale convection conditions. Water vapor came from east and west in the low troposphere and south in the upper troposphere, the west vapor transport was strongest, and east vapor transport was affected significantly by high pressure. The whole precipitation water was twice more than the climate. Cooling and humidifying in the boundary layer forced the convective energy to be unstable, and free convection altitudes was low, without the need of strong uplift triggering mechanism. The six meso-β-scale convection cells had been activated at the cold air intrusion of low vortex cloud, and Yumen station which was affected by four convection cells was divided into two periods to produce short-time severe precipitation.
[1]贾文雄, 何元庆, 李宗省, 等. 祁连山及河西走廊气候变化的时空分布特征[J]. 中国沙漠, 2007, 27(1): 83-88.
[2]李锁锁, 吕世华, 高艳红, 等. 祁连山地区生态环境恶化对环境影响的数值模拟[J]. 中国沙漠, 2008, 28(6): 1151-1154.
[3]郭小芹, 刘明春. 河西走廊近40a气候生产潜力特征研究[J]. 中国沙漠, 2011, 31(5): 1323-1329.
[4]王式功, 杨德保, 张武, 等. 甘肃河西中部地区"87.6"罕见暴雨成因分析[J]. 中国沙漠, 1994, 14(2): 24-29.
[5]孔祥伟, 陶健红. 近51年甘肃夏季气温和降水极端事件变化[J]. 干旱区研究, 2012, 29(6): 965-971.
[6]纪晓玲, 陈晓娟, 邵建, 等. 干旱区一次锋面过境短时暴雨中尺度系统分析[J]. 中国沙漠, 2012, 32(6): 1731-1737.
[7]刘勇, 杜川利. 黄土高原一次突发性大暴雨过程诊断分析[J]. 高原气象, 2006, 25(2): 302-308.
[8]井喜, 李栋梁, 李明娟, 等. 青藏高原东北侧一次突发性大暴雨环境场综合分析[J]. 高原气象, 2008, 27(1): 46-57.
[9]杜继稳, 李明娟, 张弘, 等. 青藏高原东北侧突发性暴雨地面能量场特征分析[J]. 高原气象, 2004, 23(4): 453-457.
[10]杨小银, 宋广宁, 付培健. "5.10"岷县暴雨灾害天气过程的数值模拟和诊断分析[J]. 高原气象, 2013, 32(3): 798-805, doi: 10.7522/j.issn.1000-0534.2013.00031.
[11]王劲松, 李耀辉, 康风琴, 等. 西北地区东部一次暴雨的数值模拟试验[J]. 高原气象, 2002, 21(3): 258-266.
[12]任余龙, 寿绍文, 李耀辉. 西北区东部一次大暴雨过程湿位涡诊断与数值模拟[J]. 高原气象, 2007, 26(2): 344-352.
[13]罗慧, 刘勇, 冯桂力, 等. 陕西中部一次超强雷暴天气的中尺度特征及成因分析[J]. 高原气象, 2009, 28(4): 816-826.
[14]井宇, 井喜, 屠妮妮, 等. 黄土高原低值对流有效位能区<em>β</em>中尺度大暴雨综合分析[J]. 高原气象, 2010, 29(1): 78-89.
[15]毕宝贵, 刘月巍, 李泽椿. 2002年6月8-9日陕南大暴雨系统的中尺度分析[J]. 大气科学, 2004, 28(5): 747-761.
[16]李川, 陈静, 何光碧. 青藏高原东北侧陡峭地形对一次强降水天气过程的影响[J]. 高原气象, 2006, 25(3): 442-450.
[17]毕宝贵, 刘月巍, 李泽椿. 秦岭大巴山地形对陕南强降水的影响研究[J]. 高原气象, 2006, 25(3): 485-494.
[18]段海霞, 李耀辉, 张强, 等. 西北区域几次暴雨过程中的自组织现象[J]. 高原气象, 2011, 30(4): 890-899.
[19]付双喜. 甘肃中部一次强对流天气的多普勒雷达特征分析[J]. 高原气象, 2006, 25(5): 932-941.
[20]潘留杰, 张宏芳, 王楠, 等. 陕西一次强对流天气过程的中尺度及雷达观测分析[J]. 高原气象, 2013, 32(1): 278-289, doi : 10.7522/j.issn.1000-0534.2013.00027.
[21]张云惠, 陈春艳, 杨莲梅, 等. 南疆西部一次罕见暴雨过程的成因分析[J]. 高原气象, 2013, 32(1): 191-200, doi: 10.7522/j.issn.1000-0534.2013.00019.
[22]王伏村, 许东蓓, 王宝鉴, 等. 敦煌致洪暴雨的广义湿位涡分析[J]. 高原气象, 2013, 32(1): 145-155, doi: 10.7522/j.issn.1000-0534.2013.00015.
[23]滕水昌, 渠永兴, 王坚, 等. 河西走廊一次突发性暴雨天气的诊断分析[J]. 干旱气象, 2007, 25(3): 66-71.
[24]付双喜, 张鸿发, 楚荣忠. 河西走廊中部一次强降水过程的多普勒雷达资料分析[J]. 干旱区研究, 2009, 26(5): 656-663.
[25]杨晓玲, 丁文魁, 蔡元成. 河西走廊东部一次强降水天气成因分析[J]. 甘肃科学学报, 2007, 19(1): 97-100.
[26]王伏村, 许东蓓, 修韶宇, 等. 一次西北地区东部大暴雨的物理机制分析[J]. 高原气象, 2014, 33(6): 1501-1513, doi: 10.7522/j.issn.1000-0534.2013.00104.
[27]孙军, 谌芸, 杨舒楠, 等. 北京721特大暴雨极端性分析及思考(二)极端性降水成因初探及思考[J]. 气象, 2012, 38(10): 1267-1277.
[28]王宝鉴, 黄玉霞, 陶健红, 等. 西北地区大气水汽的区域分布特征及其变化[J]. 冰川冻土, 2006, 28(1): 15-21.
[29]屠妮妮, 陈静, 何光碧. 高原东侧一次大暴雨过程动力热力特征分析[J]. 高原气象, 2008, 27(4): 796-806.
[30]李江林, 李照荣, 杨建才, 等. 近10年夏季西北地区水汽空间分布和时间变化分析[J]. 高原气象, 2012, 31(6): 1574-1581.