Using multi-source observations, such as Doppler radar, AWS, AMDAR and radiosonde measurements, and the high-resolution numerical model WRF as well as the advanced data assimilation system ADAS, a numerical simulation of the server convection event, which occurred in Shanghai on 31 July 2011, was conducted using rapid refresh technique. The results showed that the model correctly predicted this server convective weather process, the timing and location, as well as the variation of the precipitation along with the time were well consistent with the observations. It was also found that due to the thermal difference between land and sea, two sea breeze from different north and south directions met in shanghai area and low level convergence line formed, as a results, weak updraft in boundary layer appeared, combined with the local urban heat island effect, created favorable conditions for triggering the server convections; and the high gradient of moisture between low level and middle level and its unstable vertical structure provided favorable conditions for moisture vertical transportation. The numerical simulation using rapid refresh technique issued early warning of this server convection occurrence 10 hours in advance, and this provided a new way for the megacity operational convection forecasts.
WANG Xiaofeng
,
WANG Ping
,
ZHANG Lei
,
XU Xiaolin
,
LI Jia
. Numerical Simulation of ‘7·31' Severe Convection Event in Shanghai Using Rapid Refresh Technique[J]. Plateau Meteorology, 2015
, 34(1)
: 124
-136
.
DOI: 10.7522/j.issn.1000-0534.2013.00202
[1]Seed A W. A dynamic and spatial scaling approach to advection forecasting[J]. J Appl Meteor, 2003, 42: 381-388.
[2]Pierce C E, Hardaker P J, Collier C G, et al. GANDOLF: A system for generating automated nowcasts of convective precipitation[J]. Meteor Appl, 2000, 7: 341-360.
[3]Lapczak S, Aldcroft E, Stanley-Jones M, et al. The Canadian national radar project[C]. Preprints, 29th International Conf. on Radar Meteorology, Montreal, Canada, Amer Meteor Soc, 1999: 327-330.
[4]Mueller C, Saxen T, Roberts R, et al. NCAR auto-nowcast system[J]. Wea Forecasting, 2003, 18: 545-561.
[5]Mass Clifford. Nowcasting: The promise of new technologies of communication, modeling, and observation[J]. Bull Amer Meteor Soc, 2012, 93: 797-809.
[6]Benjamin S G, Dezs Dévényi, Stephen S W. An hourly assimilation-forecast cycle: The RUC[J]. Mon Wea Rev, 2004, 132: 495-518.
[7]Bornstein R, Lin Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies[J]. Atmos Environ, 2000, 34: 507-516.
[8]Inamura Tomohiko, Takeki Izumi, Hiroshi Matsuyama, et al. Diagnostic study of the effects of a large city on heavy rainfall as revealed by an ensemble simulation: A case study of central Tokyo[J]. Japan J Appl Meteor Climatol, 2011, 50: 713-728.
[9]Kishtawal C M, Niyogi D, Tewari M, et al. Urbanization signature in the observed heavy rainfall climatology over India[J]. Int J Climatol, 2010, 30: 1908-1916.
[10]殷健, 梁珊珊. 城市化对上海市区域降水的影响[J]. 水文, 2010, 30(2): 66-73.
[11]Baker David R, Barry H Lynn, Aaron Boone, et al. The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation[J]. J Hydrometeor, 2001, 2: 193-211.
[12]Shepherd J M, Carter M, Manyin M, et al. The impact of urbanization on current and future coastal precipitation: A case study for Houston[J]. Environ Plann, 2010, 37: 284-304.
[13]陈燕, 蒋维楣. 城市建筑物对边界层结构影响的数值试验研究[J]. 高原气象, 2006, 25(5): 824-833.
[14]陈燕, 蒋维楣, 吴洞, 等. 利用区域边界层模式对杭州热岛的模拟研究[J]. 高原气象, 2004, 23(4): 519-528.
[15]陈磊, 田文涛, 王禅. 半干旱区植被减少与城市化对大气的局地和非局地影响的数值模拟[J]. 高原气象, 2009, 28(2): 233-245.
[16]周定文, 胡隐樵. 下垫面特性突变时的内边界层数值研究[J]. 高原气象, 1988, 7(4): 357-366.
[17]尹红萍, 曹晓岗. 盛夏上海地区副热带高压型强对流特点分析仁[J]. 气象, 2010, 36(8): 19-25.
[18]顾问, 路璐, 施春红, 等. 上海盛夏连续清晨对流天气过程的边界层结构分析[J]. 大气科学研究与应用, 2011, 2: 55-62.
[19]苗曼倩, 唐有华. 长江三角洲夏季海陆风与热岛环流的相互作用及城市化的影响[J]. 高原气象, 1998, 17(3): 280-289.
[20]王晓峰, 许晓林, 张蕾, 等. 上海"7·31"局地强对流观测分析[J]. 高原气象, 2014, 33(6): 16271639, doi: 10.7522/j.issn.1000-0534.2013.00204.
[21]Bratseth A M. Statistical interpolation by means of successive corrections[J]. Tellus, 1986, 38: 439-447.
[22]Wilson J W, Schreiber W E. Initiation of convective storms at radar-observed boundary-layer convergence lines[J]. Mon Wea Rev, 1986, 114: 2516-2536.
[23]Wilson J W, Foote G B, Crook N A, et al. The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study[J]. Mon Wea Rev, 1992, 120: 1785-1815.
[24]Wilson J W, Mueller C. Nowcasts of thunderstorm initiation and evolution[J]. Wea Forecasting, 1993, 8: 113-131.
[25]郑祚芳, 张秀丽. 边界层急流与北京局地强降水关系的数值研究[J]. 南京气象学院学报, 2007, 30(4): 457-462.