Atmospheric Circulation and Water Vapor Characteristics of Snowstorm Anomalies in Northern Xinjiang in 2010

  • LI Ruqi ,
  • TANG Ye ,
  • ROUZI Aji
Expand
  • Xinjiang Meteorological Observatory, Urumqi 830002, China

Received date: 2013-03-13

  Online published: 2015-02-28

Abstract

The snowstorm in northern Xinjiang was extremely excessive in 2010, the snowfall and snow depth were exceed historical maximum and huge economic losses were made. The snowstorms in northern Xinjiang are divided into cold front snowstorm and warm sector snowstorm. Based on analysis of time and space distribution of the snowstorm in northern Xinjiang, using the NCEP/NCAR 2.5°×2.5° reanalysis data, the circulation and water vapor transfer features in snowstorm were analyzed. The results show that: The snowstorm in northern Xinjiang often occur in mountain area and windward slope, and geomorphic effect can't be ignored. The snowstorm in northern Xinjiang is closely related to the location and intensity of polar front jet and subtropical jet, and the overlying and confluence of two rapid zone is major large-scale circulation background of cold front snowstorm, and polar front jet is dominant during warm sector snowstorm. The cause of cold front snowstorm is confluence of the north cold air and the southwest warm moist air flow, and if warm sector snowstorm occur, the colder north cold air southward is the cause. The cold front snowstorm occurs in strong cold frontal zone, and the ground cold high pressure exhibits northeast southwest. When the ground cold high pressure exhibits northwest southeast, the warm front ahead of cold front trigger warm sector snowstorm. The water vapor of the snowstorm in northern Xinjiang is transfer in a relay, and the location and intensity of the Iran subtropical high is crucial for water vapor transfer of snowstorm.

Cite this article

LI Ruqi , TANG Ye , ROUZI Aji . Atmospheric Circulation and Water Vapor Characteristics of Snowstorm Anomalies in Northern Xinjiang in 2010[J]. Plateau Meteorology, 2015 , 34(1) : 155 -162 . DOI: 10.7522/j.issn.1000-0534.2013.00163

References

[1]池再香, 胡跃文, 白慧. "2003.1"黔东南暴雪天气过程的对称不稳定分析[J]. 高原气象, 2005, 24(5): 792-797.
[2]周淑玲, 朱先德, 符长静, 等. 山东半岛典型冷涡暴雪个例对流云及风场特征的观测与模拟[J]. 高原气象, 2009, 28(4): 935-944.
[3]梁军, 张胜军, 王树雄, 等. 大连地区一次区域暴雪的特征分析和数值模拟[J]. 高原气象, 2010, 29(3): 744-754.
[4]孙仲毅, 王军, 靳冰凌, 等. 河南省北部一次暴雪天气过程诊断分析[J]. 高原气象, 2010, 29(5): 1338-1344.
[5]张迎新, 张守保, 裴玉杰, 等. 2009年11月华北暴雪过程的诊断分析[J]. 高原气象, 2011, 30(5): 1204-1212.
[6]王正旺, 姚彩霞, 刘小卫, 等. "2009.11"山西大暴雪天气过程诊断分析[J]. 高原气象, 2012, 31(2): 477-486.
[7]陈雪珍, 慕建利, 赵桂香, 等. 华北暴雪过程中的急流特征分析[J]. 高原气象, 2014, 33(4): 1069-1075, doi: 10.7522/j.issn.1000-0534.2013.00205.
[8]林志强, 假拉, 薛改萍, 等. 1980-2010年西藏高原大到暴雪的时空分布和环流特征[J]. 高原气象, 2014, 33(4): 900-906, doi: 10.7522/j.issn.1000-0534.2012.00153.
[9]周晋红, 马鸿青, 孙少雄, 等. 山西一次低空偏东风暴雪天气结构特征分析[J]. 高原气象, 2014, 33(5): 1305-1314, doi: 10.7522/j.issn.1000-0534.2013.00087.
[10]吴庆梅, 杨波, 王国荣. 北京地区一次回流暴雪的锋区特征分析[J]. 高原气象, 2014, 33(2): 539-547, doi: 10.7522/j.issn.1000-0534.2012.00194.
[11]庄晓翠, 赵俊荣, 刘大锋. 阿勒泰地区一次暴雪天气过程分析[J]. 新疆气象, 2004, 27(1): 11-13.
[12]黄海波, 徐海容. 新疆一次秋季暴雪天气的诊断分析[J]. 高原气象, 2007, 26(3): 624-627.
[13]阿衣夏木, 孔期, 杨贵名. 2005年11月哈密暴雪天气过程的诊断分析[J]. 气象, 2007, 33(6): 67-74.
[14]杨莲梅, 杨涛, 贾丽红. 新疆大-暴雪过程气候特征及其水汽分析[J]. 冰川冻土, 2005, 27(3): 389-396.
[15]张俊兰, 崔彩霞, 陈春艳. 北疆典型暴雪天气的水汽特征研究[J]. 高原气象, 2013, 32(4): 1115-1125, doi: 10.7522/j.issn.1000-0534.2012.00105.
[16]杨莲梅, 史玉光, 汤浩. 新疆北部冬季降水异常成因分析[J]. 应用气象学报, 2010, 21(4): 491-499.
[17]庄晓翠, 赵正波, 张林梅, 等. 新疆阿勒泰地区一次罕见暴雪天气过程分析[J]. 气象与环境学报, 2010, 26(6): 24-30.
[18]刘惠云, 崔彩霞, 李如琦. 新疆北部一次持续暴雪天气过程分析[J]. 干旱区研究, 2011, 28(2): 282-286.
[19]赵俊荣. 2010年1月新疆北部罕见连续性暖区大暴雪特征及成因分析[J]. 干旱区资源与环境, 2011, 25(5): 117-123.
[20]赵俊荣, 杨雪, 蔺喜禄, 等. 一次致灾大暴雪的多尺度系统配置及落区分析[J]. 高原气象, 2013, 32(1): 201-210, doi: 10.7522/j.issn.1000-0534.2013.00020.
[21]张书萍, 祝从文. 2009年冬季新疆北部持续性暴雪的环流特征及其成因分析[J]. 大气科学, 2011, 35(5): 833-846.
[22]陈涛, 崔彩霞. "2010.1.6"新疆北部特大暴雪过程中的锋面结构及降水机制[J]. 气象, 2012, 38(8): 921-931.
[23]《新疆短期天气预报指导手册》编写组. 新疆短期天气预报指导手册[M]. 北京: 气象出版社, 1986: 221-223.
Outlines

/