Ts-NDVI Space Structure and Relationship between Structure and Climate Feature

  • YU Min ,
  • ZHANG Hongling ,
  • ZHANG Guihua
Expand
  • Heilongjiang Provincial Institute of Meteorological Sciences, Harbin 150030, China;2. Heilongjiang Climate Center, Harbin 150030, China;3. Heilongjiang Meteorological Observatory, Harbin 150030, China

Received date: 2012-02-28

  Online published: 2015-02-28

Abstract

Ts-NDVI space is a method used extensively to monitor drought, which combines spectral reflectivity and thermal infrared information. The temporary and spatial dependence and instability exist in Ts-NDVI space. Studying the features of Ts-NDVI space's structure and the relationship between the structure and climate feature is necessary to evaluate the Ts-NDVI space's temporary and spatial dependence and instability and to prove the drought monitoring and drought forecast. With the modis data and precipitation of Heilongjiang Province from 2000 to 2008, the study about interannual and seasonal variation of Ts-NDVI space and the relationship between the structural variation and climate characteristics are conducted. The single Ts-NDVI space based on primary satellite data and the composed general Ts-NDVI space based on multi-year satellite data are used in the study. The results show that: Some features are the variation of Ts-NDVI space's intercept and slope of dry and wet edge. The interannual variation ranges of the intercept and slope of dry and wet edge of Ts-NDVI space are all large, while the variation of slope is in the inverse way of the variation of intercept. The slope is to decrease if the intercept increases and vice versa, which is more obvious in wet. The seasonal variation of Ts-NDVI space is very evident and the variations of dry and wet edge are in the same way. The dry and wet edge's intercepts increase from spring to summer and decrease from summer to autumn. The max intercepts of both dry edge and wet edge are all in summer. The variation range of intercept is larger than that of slope. The wet edge is more sensitive to the environment, especially from spring to summer. The precipitation gives more impact on Ts-NDVI space, especially on wet edge. The composed general Ts-NDVI space by multi-year satellite data can reflect the climate feature within the same temporary and spatial scale. The intercept of dry edge can denote the min precipitation, and the intercept of wet edge can denote the max precipitation during the years. The correlation between the wet edge and the max precipitation is more evident.

Cite this article

YU Min , ZHANG Hongling , ZHANG Guihua . Ts-NDVI Space Structure and Relationship between Structure and Climate Feature[J]. Plateau Meteorology, 2015 , 34(1) : 183 -189 . DOI: 10.7522/j.issn.1000-0534.2013.00132

References

[1]Goddard S, Harms S K, Reichenbach S E, et al. Geospatial decision support for drought risk management[J]. Communication of the ACM, 2003, 46(1): 35-37.
[2]王革丽, 杨培才, 王咏青, 等. 中国北方地区旱涝的年代际预测分析研究[J]. 高原气象, 2007, 26(1): 67-74.
[3]马柱国. 我国北方干湿演变规律及其与区域增暖的可能联系[J]. 地球物理学报, 2005, 48(5): 1011-1018.
[4]琚建华, 吕俊梅, 任菊章. 北极涛动年代际变化对华北地区干旱化的影响[J]. 高原气象, 2006, 25(1): 74-81.
[5]张强, 韩兰英, 张立阳, 等. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91.
[6]王芝兰, 王劲松, 李耀辉, 等. 标准化降水指数与广义极值分布干旱指数在西北地区应用的对比分析[J]. 高原气象, 2013, 32(3): 839-847, doi: 10.7522/j.issn.1000-0534.2012.00077.
[7]钱正安, 宋敏红, 李万源, 等. 全球、中蒙干旱区及其部分地区降水分布细节[J]. 高原气象, 2011, 30(1): 1-12.
[8]刘莉红, 翟盘茂, 郑祖光. 中国北方夏半年极端干期的时空变化特征[J]. 高原气象, 2010, 29(2): 403 -411.
[9]黄建平, 季明霞, 刘玉芝, 等. 干旱半干旱区气候变化研究综述[J]. 气候变化研究进展, 2013, 9(1): 9-14.
[10]袭祝香, 袭祝香, 杨雪艳, 等. 东北地区夏季干旱风险评估与区划[J]. 地理科学, 2013, 33(6): 735-740.
[11]Price J C. Using spatial context in satellite data to infer regional scale vapotranspiration[J]. IEEE Trans Geosci Remote Sens, 1990, 28: 940-948.
[12]Carlson T N, Perry E M, Schmugge T J. Remote sensing of soil moisture availability and fractional vegetation cover for agricuitural fields[J]. Agricultural and Forest Meteorology, 1990, 52(1): 45-69.
[13]Carlson T N, Gillies R R, Perry E M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews, 1994, 9(1-2): 161-173.
[14]Goetz S J. Muti-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site[J]. Int J Remote Sens, 1997, 18(1): 71-94.
[15]Gillies R R, Carlson T N, Cui J, et al. A verification of the triangle' method for obtaining surface soil water content and energy fluxes from remote measurement of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature[J]. Int J Remote Sens, 1997, 18: 3145-3166.
[16]Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sens Environ, 2002, 79(2-3): 213-224.
[17]韩丽娟, 王鹏新, 王锦地. 植被指数-地表温度构成的特征空间研究[J]. 中国科学: 地球科学, 2005, 35(4): 371-377.
[18]Goward S N, Cruickhanks G D, Hope A S. Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape[J]. Remote Sens Environ, 1985, 18: 137-146.
[19]Goward S N, Hope A S. Evapotranspiration from combined reflected solar and emitted terrestrial radiation: Preliminary FIFE results from AVHRR data[J]. Adv Space Res, 1989, 9: 239-249.
[20]田辉, 马耀明, 胡晓, 等. 使用MODIS陆地产品LST和NDVI监测中国中、西部干旱[J]. 高原气象, 2007, 26(5): 1086-1095.
[21]于敏, 程明虎, 刘辉. 地表温度—归一化植被指数特征空间干旱监测方法的改进及应用研究[J]. 气象学报, 2011, 69(5): 923-931.
[22]于敏, 程明虎. 基于NDVI-<em>T</em><sub>s</sub>特征空间的黑龙江省干旱监测[J]. 应用气象学报, 2010, 21(2): 221-228.
[23]Carlson T. An Overview of the "Triangle Method" for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery[J]. Sensors, 2007, 7: 1612-1629.
[24]孙威, 王鹏新, 韩丽娟, 等. 条件植被温度指数干旱监测方法的完善[J]. 农业工程学报, 2006, 22(2): 22-26.
[25]易永红, 杨大文, 刘志雨. 多时相中分辨率卫星影像在2006年川东和重庆旱情监测中的应用研究[J]. 水利学报, 2008, 39(4): 490-499.
[26]于敏. <em>T</em><sub>s</sub>-NDVI特征空间在干旱监测中的不稳定性分析[R]. 第五届海峡两岸遥感/遥测会议, 哈尔滨, 2011: 8.
[27]李红军, 雷玉平, 李春强, 等. 地表温度—植被指数特征空间时空尺度效应分析[J]. 中国生态农业学报, 2014, 22(10): 1252-1257.
[28]Fridel M A, Davis F W. Sourse of variation in radiometric surface temperature over a tall grass prairie[J]. Remote Sens Environ, 1994, 48: 1-17.
Outlines

/