The weather situation and mesoscale systems characteristics of the extreme torrential rain occurred in Beijing on 21 July 2012 was analyzed. With the mesoscale numerical mode WRFV3.2 the extreme heavy precipitation is simulated. And based on the dry intrusion theory, the process of dry cold air activities during the heavy rain and its impact of the torrential rain are analyzed. The results show that: The torrential rain occurred in weather situation of the violent intersection of the southward cold air guided by upper trough and strong southwest warm wet air in North China area. WPSA prevented the upper-level trough from moving eastward and thus the precipitation process in Beijing kept a long time. The convective development process is along with the obvious mesoscale convective complex (MCC) activities, and MCC's ongoing activities and the rainfall centers are temporal and spatial consistent. The WRF model could accurately simulate this torrential rain process. Within 24 h before the precipitation occurs there is constant high potential vorticity and low humidity dry cold air from 35°N near the tropopause being transported along northward and downward path to 39°N near 700 hPa at the lower-level atmosphere in Beijing area. Dry intrusion changed little from 24 h to 10 h before the start of the precipitation, soon afterwards had a slight weakening and weakened rapidly after the precipitation started. The dry intrusion changed atmospheric thermal and dynamic environment of the Beijing area to impact the torrential rain before the precipitation started. Dry intrusion could increase the atmospheric potential instability in rainfall area and reserve CAPE abundant for the development of convection, providing the environment conducive for the occurrence and development of MCC. At the meantime, it increased the low-level cyclonic vorticity which is conducive to low-level air convergence and upward motion and this may be the trigger mechanism of severe convective weather, such as the MCC and its accompanying torrential rain in Beijing area.
TANG Pengyu
,
HE Hongrang
,
YANG Xiangrong
,
YAN Yuxiang
,
WANG Yahua
,
MIAO Ziqing
. Research and Analysis of Dry Intrusion during Beijing ‘7·21' Extreme Torrential Rain[J]. Plateau Meteorology, 2015
, 34(1)
: 210
-219
.
DOI: 10.7522/j.issn.1000-0534.2013.00128
[1]陶诗言等.中国之暴雨[M]. 北京: 科技出版社, 1980: 225.
[2]廖晓农, 魏东, 石增云, 等. 连续少雨背景下北京暴雨的若干特征[J]. 高原气象, 2011, 30(3): 749-759.
[3]王丽荣, 刘黎平, 王立荣, 等. 一次局地短时大暴雨的中-<em>γ</em>尺度分析[J]. 高原气象, 2011, 30(1): 217-225.
[4]李青春, 苗世光, 郑祚芳, 等. 北京局地暴雨过程中近地层辐合线的形成与作用[J]. 高原气象, 2011, 30(5): 1232-1242.
[5]姜学恭, 李夏子, 李彰俊, 等. 一次阻塞型华北对流性暴雨过程的诊断分析和数值模拟[J]. 高原气象, 2012, 31(5): 1283-1293.
[6]陶玥, 李宏宇, 洪延超. 一次华北暴雨的云物理特征及霰雹分类对云和降水影响的数值研究[J]. 高原气象, 2013, 32(1): 166-178, doi: 10.7522/j.issn.1000-0534.2013.00017.
[7]Browning K A. The dry intrusion perspective of extra-tropical cyclone development[J]. Meteor Appl, 1997, 4(4): 317-324.
[8]Browning K A, Golding B W. Mesoscale aspects of a dry intrusion within a vigorous cyclone[J]. Quart J Roy Meteor Soc, 1995, 121(523): 463-493.
[9]于玉斌, 姚秀萍. 干侵入的研究及其应用进展[J]. 气象学报, 2003, 61(6): 769-778.
[10]王欢, 寿绍文, 解以扬, 等. 干侵入对2005年8月16日华北暴雨的作用[J]. 南京气象学院学报, 2008, 31(1): 97-103.
[11]刘会荣, 李崇银. 干侵入对济南"7·18"暴雨的作用[J]. 大气科学, 2010, 34(2): 374-386.
[12]杨贵名, 毛冬艳, 姚秀萍. "强降水和黄海气旋"中的干侵入分析[J]. 高原气象, 2006, 25(1): 16-28.
[13]钟水新, 王东海, 张人禾, 等. 一次东北冷涡降水过程的结构特征与影响因子分析[J]. 高原气象, 2011, 30(4): 951-960.
[14]黄彬, 陈涛, 康志明, 等. 诱发渤海风暴潮的黄河气旋动力学诊断和机制分析[J]. 高原气象, 2011, 30(4): 901-912.
[15]白涛, 李崇银, 王铁, 等. 干侵入对陕西"2008.07.21"暴雨过程的影响分析[J]. 高原气象, 2013, 32(2): 345-356, doi: 10.7522/j.issn.1000-0534.2012.00034.
[16]王东海, 杨帅. 一个干侵入参数及其应用[J]. 气象学报, 2009, 67(4): 522-529.
[17]姚秀萍, 彭广, 于玉斌. 干侵入强度指数的表征及其物理意义[J]. 高原气象, 2009, 28 (3): 507-515.
[18]Yang S, Cui X, Ran L. Analyses of dry intrusion and instability during a extreme torrential rain event that occurred in Northern China[J].Atmos Ocean Sci Lett, 2009, 2(2): 108-112.
[19]王淑云, 寿绍文, 周连科. 干侵入对"0310"暴雨形成过程的影响[J]. 自然灾害学报, 2009, 18(6): 129-134.
[20]俞小鼎. 2012年7月21日北京特大暴雨成因分析[J]. 气象, 2012, 38(11): 1313-1329.
[21]孙建华, 赵思雄, 傅慎明, 等. 2012年7月21日北京特大暴雨的多尺度特征[J]. 大气科学, 2013, 37(3): 705-718, doi:10.3878/j.issn.1006-9895.2013.12202.
[22]陈明轩, 王迎春, 肖现, 等. 北京"7·21"暴雨雨团的发生和传播机理[J]. 气象学报, 2013, 71(4): 569-592.
[23]谌芸, 孙军, 徐珺, 等. 北京"7·21"特大暴雨极端性分析及思考(一)观测分析及思考[J]. 气象, 2012, 38(10): 1255-1266.
[24]孙军, 谌芸, 杨舒楠, 等. 北京"7·21"特大暴雨极端性分析及思考(二)极端性降水成因初探及思考[J]. 气象, 2012, 38(10): 1267-1277.
[25]方翀, 毛冬艳, 张小雯, 等. 2012年7月21日北京地区特大暴雨中尺度对流条件和特征初步分析[J]. 气象, 2012, 38(10): 1278-1287.
[26]Maddox R A. Mesoscale convective complexes[J]. Bull Amer Meteor Soc, 1980, 61(11): 1374-1387.
[27]陆汉城, 杨国祥. 中尺度天气原理与预报[M]. 北京: 气象出版社, 2004: 114-115.