Vertical Structure of Atmosphere on East Antarctic Plateau

  • FU Liang ,
  • XIAO Cunde ,
  • BIAN Lingen ,
  • LIU Jingfeng
Expand
  • Chinese Academy of Meteorological Sciences, Beijing 100081, China;2. State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2013-08-21

  Online published: 2015-04-28

Abstract

Based on the GPS radiosonde data obtained from the 28th Chinese Antarctic expedition during austral summer of 2012, the vertical structure of the troposphere and the boundary layer characteristics are analyzed. The results show that the average vertical temperature lapse rate of the Antarctic plateau middle troposphere is 5.2℃·km-1, which is significantly lower than the global average middle tropospheric lapse rate (6.5℃·km-1), the average height and temperature of lapse rate tropopause are 4.6 km and -51.3℃, respectively. The vapor exists mainly in the lower troposphere below 2 km. Multilayer inversion structure exists in the planetary boundary layer, strong inversion layer mainly exists below 500 m. The mean height of planetary boundary is 890 m, and it shows an obvious diurnal variation: low in the morning and high at noon. This study can provide ground truth value for validation and calibration of satellite data in inland Antarctic, and also lay an important foundation for the verification of the results get from the atmospheric general circulation model.

Cite this article

FU Liang , XIAO Cunde , BIAN Lingen , LIU Jingfeng . Vertical Structure of Atmosphere on East Antarctic Plateau[J]. Plateau Meteorology, 2015 , 34(2) : 299 -306 . DOI: 10.7522/j.issn.1000-0534.2014.00032

References

[1]Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange[J]. Rev Geophys, 1995, 33: 403-439.
[2]Reid G C, Gage K S. The tropical tropopause over the western Pacific: Wave driving, convection and the annual cycle[J]. J Geophys Res: Atmos(1984-2012), 1996, 101(D16): 21233-21241.
[3]Reid G C. Seasonal and interannual temperature variations in the tropical stratosphere[J]. J Geophys Res: Atmos(1984-2012), 1994, 99(D9): 18923-18932.
[4]Atticks M G, Robinson G D. Some features of the structure of the tropical tropopause[J]. Quart J Roy Meteor Soc, 1983, 109(460): 295-308.
[5]徐安伦, 董保举, 刘劲松, 等. 聂海湖滨大气边界层结构及特征分析[J]. 高原气象, 2010, 29(3): 637-644.
[6]郭建平, 薛红喜, 马兆岩, 等. 珠穆朗玛峰地区若干气象要素的垂直特征[J]. 高原气象, 2013, 32(6): 1568-1579, doi: 10.7522/j.issn.1000-0534.2012.00152.
[7]徐海, 邹捍, 李鹏, 等. 藏东南林芝机场低层风场垂直结构与变化特征[J]. 高原气象, 2014, 33(2): 355-360, doi: 10.7522/j.issn.1000-0534.2013.00009.
[8]李耀孙, 石春娥, 杨军, 等. 我国东部地区秋冬季模式边界层探空效果评估[J]. 高原气象, 2012, 31(6): 1690-1703.
[9]赵建华, 张强, 王胜, 等. 西北干旱区夏季大气边界层逆温强度和高度的频率密度研究[J]. 高原气象, 2013, 32(2): 377-386, doi: 10.7522/j.issn.1000-0534.2012.00037.
[10]卞林根, 林忠, 张东启, 等. 南极大气臭氧和温度垂直结构及其季节变化的研究[J]. 中国科学, 2011, 41(12): 1761-1770.
[11]Tomasi C, Petkov B, Benedetti E, et al. Characterization of the atmospheric temperature and moisture conditions above Dome C (Antarctica) during austral summer and fall months[J]. J Geophys Res: Atmos(1984-2012), 2006, 111(D20): 1-12.
[12]Ma Y, Bian L, Xiao C, et al. Near surface climate of the traverse route from Zhongshan station to Dome A, East Antarctica[J]. Antarctic Science, 2010, 22(4): 443-459.
[13]Hagelin S, Masciadri E, Lascaux F, et al. Comparsion of the atmosphere above the south pole, Dome C and Dome A: First attempt[J]. Monthly Notices of the Royal Astronomical Society, 2007, 307(4): 1-14.
[14]Randei W J, Wu F. Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses[J]. J Geophys Res: Atmos(1984-2012), 2000, 105(D12): 15509-15523.
[15]Hoinka K P. Statistics of the global tropopause pressure[J]. Mon Wea Rev, 1998, 126: 3303-3325.
[16]蔡福, 李辑, 明慧青, 等. 沈阳地区对流层顶气候特征分析[J]. 气象与环境学报, 2006, 22(1): 11-16.
[17]韦志刚, 陈文, 黄荣辉. 敦煌夏末大气垂直结构和边界层高度特征[J]. 大气科学, 2010, 39(5): 905-913.
[18]Za?ngl G, Hoinka K P. The tropopause in the polar regions[J]. J Climate, 2001, 14: 3117-3139.
[19]Reid G C, Gage K S. Interannual variation in the height of the tropical tropopauses[J]. J Geophys Res: Atmos(1984-2012), 1985, 90(D3): 5629-5635.
[20]Wang Kouying, Lin Songchin. First continuous soundings of temperature structure over Antarctic winter from FORMOSAT-3/COMSMIC constellation[J]. Geophys Res Lett, 2007, 34, L12805.
[21]Connolley V M. The Antarctic temperature inversion[J]. Int J Climatol, 1996, 16: 1333-1342.
[22]中国气象局气象探测中心. 中国气象局常规高空气象探测规范[Z]. 北京: 气象出版社, 2003: 271.
[23]WMO. Definition of the tropopause[J]. WMO Bull, 1957, 6: 136.
[24]Seidel D J, Ross R J, Angel J K. Climatological characteristics of the tropical tropopause as revealed by radiosondes[J]. J Geophys Res: Atmos(1984-2012), 2001, 106(D8): 7857-7878.
[25]马永锋, 卞林根, 周秀骥, 等. 北冰洋80°N-85°N浮冰区对流层大气的垂直结构[J]. 海洋学报, 2011, 33(2): 48-59.
[26]Randel W J, Wu F, Forster P. The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism[J]. J Atmos Sci, 2007, 64: 4489-4496.
[27]Wirth V. Staticstability in the extratropical trpopause region[J]. J Atmos Sci, 2003, 60: 1395-1409.
[28]Bian L, Lu L, Zhang Z, et al. Analyses of structure of planetary boundary layer in ice camp over Arctic Ocean[J]. Chinese J Polar Sci, 2007, 18(1): 8-17.
[29]李茂善, 戴有学, 马耀明, 等. 珠峰地区大气边界层结构及近地层能量交换分析[J]. 高原气象, 2006, 25(5): 807-813.
Outlines

/