Analysis on the Frontogenesis Mechanism of Dian-Qian Quasi-stationary Front Inducing Spring Rainstorm in Guizhou Province

  • DU Zhengjing ,
  • HE Yulong ,
  • XIONG Fang ,
  • DENG Xiaohong ,
  • SHI Kaiyin ,
  • PENG Qian
Expand
  • Guizhou Province Meteorological Service Center, Guiyang 550002, China;2. Guizhou Key Laboratory of Mountounious Climate and Resources, Guiyang 550002, China;3. Meteorological Bereau of South Guizhou, Duyun 555800, China;4. Guizhou Meteorological Bureau, Guiyang 550002, China;5. Guiyang Meteorological Bureau, Guiyang 550002, China

Received date: 2013-05-20

  Online published: 2015-04-28

Abstract

Using satellite images, observational data and the 6-hour-inteval reanalysis data with 1°×1° resolution from NCEP, five spring rainstorm processes in Guizhou Province under the background of Dian-Qian quasi-stationary front from 2003 to 2006 are analysed. The results show: In the setting of quasi-stationary front, the spring rainstorm in Guizhou Province is impacted together with the upper and low jet stream, upper trough, cold air and the quasi-stationary front. The rich water vapor is transported from the Bay of Bengal and Beibu Gulf to Guizhou province by low level jet stream, and the convective available potential energy is accumulated continuously. The acceleration of high jet stream strengthens the large-scale ascending motion with divergence in high level and convergence in low level, and drives the cold air southward via the positive circulation below the jet stream, then makes the quasi-stationary front active and frontogenesis, which is the trigger mechanism of the rainstorm processes. The frontogenesis phenomenon shows that the acceleration of high level jet stream results in the frontogenesis in the polar front in the mid-upper troposphere and the formation of the positive circulation in the middle troposphere. The latter strengthens the horizontal deformation and vertical motion and then enhances the frontogenesis. The horizontal deformation and vertical motion impact the rainstorm directly: The range of the horizontal deformation is in proportion to the rainfall intensity, and the convective cloud generating near the quasi-stationary moves along the direction of the inclined item related to vertical motion. Quasi-stationary front is close to spring rainstorm in Guizhou province. The heavy rainfall area is distributed mainly southward one latitude zone from the quasi-stationary front. The acceleration of high jet stream, the intensity of the moisture convergence around the cold front and the region of high-energy tongue have an indicative function to the extent and intensity of heavy rainfall. Based on above frontogenesis mechanism, a physical model about spring rainstorm in Guizhou province induced by the quasi-stationary front is epurated.

Cite this article

DU Zhengjing , HE Yulong , XIONG Fang , DENG Xiaohong , SHI Kaiyin , PENG Qian . Analysis on the Frontogenesis Mechanism of Dian-Qian Quasi-stationary Front Inducing Spring Rainstorm in Guizhou Province[J]. Plateau Meteorology, 2015 , 34(2) : 357 -367 . DOI: 10.7522/j.issn.1000-0534.2013.00176

References

[1]王曼, 段旭, 李华宏, 等. 地形对昆明准静止锋影响的数值模拟研究[J]. 气象, 2009, 35(5): 77-83.
[2]段旭, 李英, 孙晓东. 昆明准静止锋结构[J]. 高原气象, 2002, 21(2): 205-209.
[3]杜小玲, 蓝伟. 两次滇黔准静止锋锋区结构的对比分析[J]. 高原气象, 2010, 29(5): 1183-1195.
[4]钱维宏, 符娇兰. 2008年初江南冻雨过程的湿大气锋生[J]. 中国科学: 地球科学, 2009, 39(6): 787-798.
[5]李登文, 乔琪, 魏涛. 2008年初我国南方冻雨雪天气环流及垂直结构分析[J]. 高原气象, 2009, 28(5): 1140-1148.
[6]杨贵名, 毛冬艳, 孔期. "低温雨雪冰冻"天气过程锋区特征分析[J]. 气象学报, 2009, 67(4): 652-665.
[7]寿绍文, 王祖锋. 1971年7月上旬贵州地区暴雨过程物理机制的诊断研究[J]. 气象科学, 1998, 18(3): 231-238.
[8]杨洋, 俞佚名. 一次西南静止锋的准地转锋生函数分析[J]. 高原气象, 1995, 14(3): 365-372.
[9]井喜, 陈见, 胡春娟, 等. 广西和贵州MCC暴雨过程综合分析[J]. 高原气象, 2009, 28(2): 335-351.
[10]Hoskins B J, Neto E C, Cho H R. The formation of multiple fronts[J]. Quart J Roy Meteor Soc, 1984, 110: 881-896.
[11]Thorpe A J, Emanuel K A. Frontogenesis in the Presence of Small Stability to Slantwise Convection[J]. Atmos Sci, 1985, 42: 1809-1824.
[12]王兴宝. 锋生过程对扰动发展的影响[J]. 大气科学, 1997, 21(4): 472-484.
[13]王兴宝, 伍荣生. 变形场锋生条件下斜压锋区上对称波包的发展[J]. 气象学报, 2000, 58(4): 403-417.
[14]高守亭, 陶诗言. 高空急流加速与低层锋生[J]. 大气科学, 1991, 15(2): 11-22.
[15]姚秀萍, 于玉斌, 赵兵科. 梅雨锋云系的结构特征及其成因分析[J]. 高原气象, 2005, 24(6): 1002-1011.
[16]何斌, 何锋, 范晓红, 等. 一次长江中下游梅雨锋暴雨过程的诊断分析[J]. 高原气象, 2013, 32(4): 1074-1083, doi: 10.7522/j.issn.1000-0534.2012.00101.
[17]倪允琪, 周秀骥. 中国长江中下游梅雨锋暴雨形成机理以及监测与预测理论和方法研究[J]. 气象学报, 2004, 62(5): 647-662.
[18]张建海, 曹艳艳, 陈柯辰. 2011年浙江梅汛期前后旱涝急转形势及梅雨锋结构特征分析[J]. 高原气象, 2013, 32(1): 221-233, doi: 10.7522/j.issn.1000-0534.2013.00022.
[19]赵玉春, 许小峰, 崔春光.中尺度地形对梅雨锋暴雨影响的个例研究[J].高原气象, 2012, 31(5): 1268-1282.
[20]罗红磊, 陈海山, 林宗桂, 等. 一条弱静止锋上对流系统发生过程的中尺度特征[J]. 热带气象学报, 2013, 29(1): 106-114.
[21]杜正静, 丁治英, 张书余. 2001年1月滇黔准静止锋在演变过程中的结构及大气环流特征分析[J]. 热带气象学报, 2007, 23(3): 284-292.
[22]陶祖钰. 基础理论与预报实践[J]. 气象, 2011, 37(2): 129-135.
Outlines

/