Based on a statistical relation between local Radar echo intensity base data and local heavy rainfall, to find the upstream echo areas that will move to the local raining region in next hour by the regional Lucas-Kanade optical flow method. Meanwhile to analyze the echo features at every scan surface, so that to learn the raining system stretching altitude. By analysis of the temporal and spatial characteristics of dynamic echo areas in current hour with information at scan surfaces every 10 minutes, to build the relation between Radar echo intensity features and local rainfall, then applied it on a predicting method of improved rainfall extreme probability, thus to construct forecast and warning index of extreme rainfall return period in next hour. The results will provide the technique support and professional reference for emergency schemes and strategy and tactics. The whole scheme is based on the Doppler radar echo intensity base data at scanning surfaces and the hourly precipitation data of Jianhu weather station during June, July, August in 2006-2011. Jianhu station is within the scanning area of the radar located at Yancheng . The echo dynamic upstream of the local heavy rainfall system is determined by the regional Lucas-Kanade optical flow method. The statistical probability correlation is calculated between echo intensity classification and precipitation series in day and night by Peirson III and Generalized Pareto Distribution methods. The probability characteristics of return period of graded extreme rainfall and the local extreme rainfall under the echo types are also calculated, then the statistic index is constructed between the radar echo dynamic features including the trend of evolution and the probability of local extreme rainfall in next hour, the index correlation and its test all get to 70%. The index can predict the probabilities of different grade extreme rainfall in return period at local place. It is an optimization method of radar dynamic statistics for nowcasting and warning of the extreme rainstorm in next hour.
WANG Jianhong
,
HUANG Wei
,
WANG Qun
,
MIAO Chunsheng
,
ZHANG Zhigang
,
XU Liangmou
. Construction and Application of Extreme Rainstorm Probability Prediction Based on Radar Echo Base Data[J]. Plateau Meteorology, 2015
, 34(2)
: 575
-585
.
DOI: 10.7522/j.issn.1000-0534.2014.00132
[1]胡胜, 罗聪, 黄晓梅, 等. 基于雷达外推和中尺度数值模式的定量降水预报的对比分析[J]. 气象, 2012, 38(3): 274-280.
[2]李广腹, 王芬. 用天气雷达回波强度资料估测降水[J].气象科技, 2007, 35(2): 286-288.
[3]王坚红, 孙素琴, 苗春生, 等. 淮河下游小时内降水分级与雷达信息特征[J]. 气象与环境学报, 2010, 26(2): 1-6.
[4]张亚萍, 程明虎, 夏梅文, 等. 天气雷达回波运动场估测及在降水临近预报中的应用[J]. 气象学报, 2006, 64(5): 632-646.
[5]俞小鼎, 王迎春, 陈明轩, 等. 新一代天气雷达与强对流天气预警[J]. 高原气象, 2005, 24(3): 456-464.
[6]尤红, 肖子牛, 曹中和, 等. "2·28"云南罕见春季强对流雷达回波特征分析与数值模拟[J]. 高原气象, 2010, 29(5): 1270-1279.
[7]陈英英, 唐仁茂, 李德俊, 等. 利用雷达和卫星资料对一次强对流天气过程的云结构特征分析[J]. 高原气象, 2013, 32(4): 1148-1156, doi: 10.7522/j.issn.1000-0534.2012. 00108.
[8]周文志, 唐熠, 王艳兰, 等. 低空急流暴雨天气概念模型及其雷达回波特征分析[J]. 灾害学, 2011, 26(4): 14-18.
[9]高晓荣, 梁建茵, 李春晖, 等. 多平台(雷达、卫星、雨量计)降水信息的融合技术初探[J]. 高原气象, 2013, 32(2): 549-555, doi: 10.7522/j.issn.1000-0534.2012.00052.
[10]王改利, 赵翠光, 刘黎平, 等. 雷达回波外推预报的误差分析[J]. 高原气象, 2013, 32(3): 874-883, doi: 10.7522/j.issn.1000-0534.2012.00081.
[11]庄薇, 刘黎平, 王改利, 等. 青藏高原复杂地形区雷达估测降水方法研究[J]. 高原气象, 2013, 32(5): 1224-1235, doi: 10.7522/j.issn.1000-0534.2012.00118.
[12]王丹, 王改利, 刘黎平, 等. 基于雷达回波外推预报和中尺度模式预报的短时降水对比分析[J]. 高原气象, 2014, 33(3): 811-822, doi: 10.7522/j.issn.1000-0534.2013.00038.
[13]汤达章, 周咏梅, 胡明宝. 雷达回波跟踪的两种方法及精度比较[J]. 应用气象学报, 1994, 5(3): 304-311.
[14]Lucas B, Kanade T. An interactive image registration technique with an application to stereovision proceedings[C]. The 7<sup>th</sup> international Jion conference on Artificial Intelligence, 1981, 2: 121-130.
[15]Horn B K P, Schunk B G. Determing optical flow[J]. Artifical Intelligence, 1981, 17: 185-204
[16]党元臻. 基于视频序列的目标检测与跟踪[D]. 青岛: 山东大学, 2013: 1-47.
[17]朱婧. 基于改进的光流场算法对运动目标的检测与跟踪技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2006: 1-47.
[18]么枕生, 丁裕国. 气候统计[M]. 北京: 气象出版社, 1990 : 48-51.
[19]丁裕国, 金莲姬, 刘晶淼. 极端天气气候时间序列极值特征的一种新方法[J] . 大气科学, 2002, 26(3): 343-351.
[20]刘焕彬. 气象参数极值理论频率曲线的Excel实现[J]. 河南气象, 2006, 2: 70-71.
[21]程炳岩, 丁裕国, 张金铃, 等. 广义帕雷托分布在重庆暴雨强降水研究中的应用[J]. 高原气象, 2008, 27(5): 1004-1009.
[22]江志红, 丁裕国, 朱莲芳, 等. 利用广义帕雷托分布拟合中国东部日极端降水的试验[J]. 高原气象, 2009, 28(3): 573-580.
[23]Coles S, Bawa J, Trenner L, et al. An Introduction to Statistical Modeling of Extreme Values[M]. London: Springer, 2001.
[24]Katz R W, Brush G S, Parlange M B. Statistics of extremes: Modeling ecological disturbances[J]. Ecology, 2005, 86(5): 1124-1134.