In situ soil temperature and moisture observations at 7 stations and one region (Naqu) over the Qinghai-Xizang Plateau are used to validate two reanalysis products (i.e. ERA Interim and CFSR) and six land surface model products (i.e. ERA/land, MERRA/land, GLDAS-NOAH, GLDAS-CLM, GLDAS-MOSAIC and GLDAS-VIC). Four statistical quantities, i.e. mean bias (BIAS), standard deviation of differences (σd), correlation coefficient (R) and ratio of standard deviations (σr/σobs), are calculated at each site, and the Brunke ranking method is applied to quantify the relative performance of the eight datasets for each variable and statistical quantity. The results show that for daily soil temperature CFSR has the best overall performance, followed by MERRA/land and GLDAS-CLM, while ERA Interim and ERA/land perform the worst. GLDAS-CLM tends to overestimate daily soil temperatures, while other datasets tend to underestimate soil temperatures at most observation sites, with ERA Interim and ERA/land having large cold bias exceeding -20℃. For soil moisture during unfreezing period (May to October), GLDAS-CLM shows the best overall performance, followed by GLDAS-NOAH and ERA Interim. CFSR, ERA Interim, and ERA/land have wet biases, with most of the biases between 0.05 and 0.20 m3·m-3, while GLDAS-NOAH, GLDAS-CLM and GLDAS-MOSAIC tend to be drier than observations.
[1]李崇银. 气候动力学引论[M]. 北京: 气象出版社, 1995: 290-296.
[2]Henderson-sellers A, Yang Z L, Dickinson R E. The project for intercomparison of land-surface parameterization schemes[J]. Bull Amer Meteor Soc, 1994, 74(7): 1335-1350.
[3]Chahine M T. The hydrological cycle and its influence on climate[J]. Nature, 1992, 359: 373-380.
[4]Trenberth K E. Atmospheric moisture recycling: Role of advection and local evaporation[J]. J Climate, 1999, 12: 1368-1381.
[5]Bengtsson L. The global atmospheric water cycle[J]. Environ Res Lett, 2010, 5(2), doi: 10.1088/1748-9326/5/2/025002.
[6]De R P, Drusch M, Boone A, et al. AMMA land surface model intercomparison experiment coupled to the community microwave emission model: ALMIP-MEM[J]. J Geophys Res: Atmospheres, 2009, 114, D05105, doi: 10.1029/2008JD010724.
[7]叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979: 1-278.
[8]Wang S L, Jin H J, Li S X, et al. Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts[J]. Permafrost and Periglacial Processes, 2000, 11(1): 43-53.
[9]Zhao L, Ping C L, Yang D Q, et al. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China[J]. Global and Planetary Change, 2004, 43(1-2): 19-31.
[10]Xu W X, Gu S, Zhao X Q, et al. High positive correlation between soil temperature and NDVI from 1982 to 2006 in alpine meadow of the three-river source region on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(4): 528-535.
[11]Cheng G, Wu Tonghua. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. J Geophys Res, 2007, 112, F02S03, doi: 10.1029/2006JF000631.
[12]张少波, 陈玉春, 吕世华, 等. 青藏高原植被变化对中国东部夏季降水影响的模拟研究[J]. 高原气象, 2013, 32(5): 1236-1245, doi: 10.7522/j.issn.1000-0534.2012.00119.
[13]Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 2011, 137(656): 553-597.
[14]Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 1996, 77(3): 437-471.
[15]Saha S, Moorthi S, Pan H L, et al. The NCEP climate forecast system reanalysis[J]. Bull Amer Meteor Soc, 2010, 91(8): 1015-1057.
[16]Wang A H, Zeng X B. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. J Geophys Res: Atmospheres, 2012, 117, D05102, doi: 10.1029/2011JD016553.
[17]Zou H, Zhu J, Zhou L, et al. Validation and application of reanalysis temperature data over the Tibetan Plateau[J]. J Meteor Res, 2014, 28 (1): 139-149.
[18]荀学义, 胡泽勇, 吴学宏, 等. 三套位势高度再分析资料在青藏高原地区的对比分析[J]. 高原气象, 2011, 30(6): 1444-1452.
[19]李瑞青, 吕世华, 韩博, 等. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象, 2012, 31 (6): 1488-1502.
[20]Zhu X Y, Liu Y M, Wu G X. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets[J]. Science China: Earth Sciences, 2012, 55(5): 779-786.
[21]Su Z, De R P, Wen J, et al. Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau[J]. J Geophys Res: Atmospheres, 2013, 118(11): 5304-5318.
[22]Chen Y Y, Yang K, Qin J, et al. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J]. J Geophys Res: Atmospheres, 2013, 118(10): 4466-4475.
[23]Yang K, Qin J, Zhao L, et al. A multi-scale soil moisture and freeze-thaw monitoring network on the third pole[J]. Bull Amer Meteor Soc, 2013, 94(12): 1907-1916.
[24]Hirose N, Koike T, Ishidaira. Study on spatially averaged evaporation under soil moisture heterogeneity affected by permafrost micro-topography[J]. J Meteor Soc Japan, 2002, 80: 191-203.
[25]中国科学院中国植被图编辑委员会. 中国植被图集1: 1000000[Z]. 北京: 科学出版社, 2001.
[26]王青霞, 吕世华, 鲍艳, 等. 青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析[J]. 高原气象, 2014, 33(2): 301-312, doi: 10.7522/j.issn.1000-0534.2014.00002.
[27]肖瑶, 赵林, 李韧, 等. 藏北高原多年冻土区地表反照率特征分析[J]. 冰川冻土, 2010, 29(3): 480-488.
[28]Reichle R H, Koster R D, De Lannoy G J M, et al. Assessment and enhancement of MERRA land surface hydrology estimates[J]. J Climate, 2011, 24(24): 6322-6338.
[29]Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bull Amer Meteor Soc, 2004, 85(3): 381-394.
[30]Balsamo G, Albergel C, Beljaars A, et al. ERA-Interim/Land: A global land water resources dataset[J]. Hydrology and Earth System Sciences Discussions, 2013, 10: 14705-14745.
[31]魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 1-298.
[32]Brunke M A, Fairall C W, Zeng X B, et al. Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes[J]. J Climate, 2003, 16(4): 619-635.
[33]Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. J Geophys Res: Atmospheres, 2001, 106(D7): 7183-7192.
[34]Decker M, Brunke M A, Wang Z, et al. Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations[J]. J Climate, 2012, 25(6): 1916-1944.
[35]陈渤黎, 吕世华, 罗斯琼. CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(6): 1511-1522.
[36]熊建胜, 张宇, 王少影, 等. CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J]. 高原气象, 2014, 33(2): 323-336, doi: 10.7522/j.issn.1000-0534.2014.00012.
[37]Sheffield J, Goteti G, Wood E F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling[J]. J Climate, 2006, 19(13): 3088-3111.