Application of ERA Product of Land Surface Temperature in Permafrost Regions of Qinghai-Xizang Plateau

  • QIN Yanhui ,
  • WU Tonghua ,
  • LI Ren ,
  • XIE Changwei ,
  • QIAO Yongping ,
  • CHEN Hao ,
  • ZOU Defu ,
  • ZHANG Lele
Expand
  • Cryosphere Research Station on the Qinghai-Tibet Plateau/State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Science, Beijing 100049, China

Received date: 2014-07-07

  Online published: 2015-06-28

Abstract

The land surface temperature(LST) is an important variable between atmosphere and ground surface. The LST can impact permafrost distribution and is also a significant parameter for mapping the permafrost distribution. In order to validate the ERA product of land surface temperature over the Qinghai-Xizang Plateau, the ERA product of LST with the observations at three metrological stations from 1 January 2011 to 31 December 2012 have been compared. And the biases, mean square errors, correlation coefficients, fractional error and index of agreement have been analyzed. The results showed that the ERA product of LST can reflect general characteristics of the three metrological stations in the permafrost region. But LST of the ERA product is a little lower than that of the observations, which Xidatan was 1.7℃ lower, Wudaoliang 1.0℃ lower and Tanggula 0.9℃ lower. The correlation coefficients and explained variances are extremely high, while the mean square errors of the reanalysis data were respectively -1.7℃, -1.5℃ and -0.9℃. The RMSE were 2.5℃, 2.6℃ and 1.7℃ at the three sites respectively. Though the LST of ERA product has some limitations applying in the permafrost regions of the Qinghai-Xizang Plateau, to some extent, it is convincible especially on the uneven distribution and low density of metrological stations in the Qinghai-Xizang Plateau. It is still regarded as an effective proxy data of the land surface temperature in the permafrost region of the Qinghai-Xizang Plateau.

Cite this article

QIN Yanhui , WU Tonghua , LI Ren , XIE Changwei , QIAO Yongping , CHEN Hao , ZOU Defu , ZHANG Lele . Application of ERA Product of Land Surface Temperature in Permafrost Regions of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2015 , 34(3) : 666 -675 . DOI: 10.7522/j.issn.1000-0534.2014.00151

References

[1]Feng S, Tang M, Wang D. New evidence for the Qinghai-Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China[J]. Chinese Science Bulletin, 1998, 43(20): 1745-1749.
[2]张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1): 1-8.
[3]周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 1-450.
[4]刘晓东. 青藏高原隆升对亚洲季风形成和全球气候与环境变化的影响[J]. 高原气象, 1999, 18(3): 1-12.
[5]Bengtsson L, Shukla J. Integration of space and in situ observations to study global climate change[J]. Bull Amer Meteor Soc, 1988, 69(10): 1130-1143.
[6]Trenberth K E, Olson J G. An evaluation and inter comparison of global analyses from the National Meteorological Center and the European Centre for Medium Range Weather Forecasts[J]. Bull Amer Meteor Soc, 1988, 69(9): 1047-1057.
[7]赵天保, 符淙斌, 柯宗建, 等. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 241-254.
[8]Kalnay E, Kanamitsu M, Kistler, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 1996, 77(3): 437-471.
[9]Kistler R, Kalnay E, Collins W, et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation[J]. Bull Amer Meteor Soc, 2001, 82(2): 247-267.
[10]Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP-DOE AMIP-II Reanalysis (R-2)[J]. Bull Amer Meteor Soc, 2002, 83(11): 1631-1643.
[11]Gibson R, Kallberg P, Uppala S, et al. Re-analysis project report series No.1, European Centre for Medium-Range Weather Forecasts (ECMWF)[J]. Reading, UK, 1997.
[12]Simmons A J, Gibson J K. The ERA-40 project plan, ERA-40 project report series No. 1, ECMWF[J]. Reading, UK, 2000: 63.
[13]Uppala S M, Kllerg P W, Simmons A J, et al. The ERA‐40 reanalysis[J]. Quart J Roy Meteor Soc, 2005, 131(612): 2961-3012.
[14]Berrisford P, Dee D, Fielding K, et al. The ERA-Interim Archive[R]. ECMWF, ERA Report Series, 2009 (1): 1-16.
[15]Onogi K, Tsutsui J, Koide H, et al. The JRA-25 reanalysis[J]. J Meteor Soc Japan, 2007, 85(3): 369-432.
[16]赵天保, 符淙斌. 几种再分析地表气温资料在中国区域的适用性评估[J]. 高原气象, 2009, 28(3): 594-606.
[17]Zhao Tianbao, Guo Weidong, Fu Congbin. Calibrating and evaluating reanalysis surface temperature error by topographic correction[J]. J Climate, 2008, 21(6): 1442-1448.
[18]赵天保, 符淙斌. 中国区域ERA-40、 NCEP-2再分析资料与观测资料的初步比较与分析[J]. 气候与环境研究, 2006, 11(1): 14-32.
[19]赵天保, 艾丽坤, 冯锦明. NCEP再分析料和中国站点观测资料的分析比较[J]. 气候与环境研究, 2004, 9(2): 278-294.
[20]谢爱红, 秦大河, 任贾文, 等. NCEP/NCAR 再分析资料在珠穆朗玛峰—念青唐古拉山脉气象研究中的可信性[J]. 地理学报, 2007, 62(3): 268-278.
[21]魏丽, 李栋梁. NCEP/NCAR 再分析资料在青藏铁路沿线气候变化研究中的适用性[J]. 高原气象, 2003, 22(5): 488-494.
[22]魏丽, 李栋梁. 青藏高原地区NCEP 新再分析地面通量资料的检验[J]. 高原气象, 2003, 22(5): 478-487.
[23]支星, 徐海明.三种再分析资料的高空温度与中国探空温度资料的季节平均特征对比分析[J]. 高原气象, 2013, 32(1): 97-109, doi: 10.7522/j.issn.1000-0534.2013.00011.
[24]孙玉婷, 高庆九, 闵锦忠.再分析温度资料与西藏地区冬、 夏季观测气温的比较[J]. 高原气象, 2013, 32(4): 909-920, doi: 10.7522/j.issn.1000-0534.2012.00087.
[25]Frauenfeld O W, Zhang T J, Serreze M C. Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau[J]. J Geophys Res: Atmospheres (1984-2012), 2005, 110(D02), doi: 10.1029/2004jd005230.
[26]邹捍, 朱金焕. 再分析资料在青藏高原地区地面温度研究中的适用性[C]//中国气象学会. 第 28 届中国气象学会年会. 北京: 中国气象学会, 2011: 1-721.
[27]李瑞青, 吕世华, 韩博, 等. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象, 2012, 31(6): 1488-1502.
[28]何冬燕, 田红, 邓伟涛. 三种再分析地表温度资料在青藏高原区域的适用性分析[J]. 大气科学学报, 2013, 36(4): 458-465.
[29]Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 2011, 137(656): 553-597.
[30]孙琳婵, 赵林, 李韧, 等. 西大滩地区光合有效辐射的基本特征[J]. 冰川冻土, 2011, 33(6): 1136-1143.
[31]李韧, 赵林, 丁永健. 地表能量变化对多年冻土活动层融化过程的影响[J]. 冰川冻土, 2011, 33(6): 1235-1242.
[32]黄蓉, 胡泽勇, 关婷, 等. 藏北高原气温资料插补及其变化的初步分析[J]. 高原气象, 2014, 33(3): 637-646, doi: 10.7522/j.issn.1000-0534.2014.00027.
[33]Li Mengmeng, Song Yu, Huang Xin, et al. Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China[J]. J Geophys Res: Atmospheres, 2014, 119(11): 6325-6346.
[34]魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999: 77- 81.
[35]陈渤黎, 罗斯琼, 吕世华, 等.黄河源区若尔盖站冻融期土壤温、 湿度的模拟与改进[J]. 高原气象, 2014, 33( 2) : 337-345, doi: 10.7522/j.issn.1000-0534.2013.00085.
[36]王绍令. 青藏高原局地因素对近地表层地温的影响[J]. 高原气象, 2002, 21(1): 85-89.
[37]赵林, 程国栋, 李述训. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000, 45(11): 1205-1211.
[38]王青霞, 吕世华, 鲍艳, 等.青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析[J]. 高原气象, 2014, 33(2): 301-312, doi: 10.7522/j.issn.1000-0534.2014.00002.
[39]崔洋, 王澄海. 季节转换期青藏高原西部地区感潜热再分析资料存在的问题及原因[J]. 自然科学通报, 2008, 18(11): 1279-1287.
Outlines

/