Simulation of the Freezing-Thawing Processes at Nagqu Area over Qinghai-Xizang Plateau

  • LIU Huolin ,
  • HU Zeyong ,
  • Yang Yaoxian ,
  • WANG Yu ,
  • SUN Genhou ,
  • HUANG Rong
Expand
  • Key Laboratory for Land Process and Climate Change in Cold and Arid Regions, Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China;4. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;5. Civil Aviation University of China, Tianjin 300300, China;6. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China

Received date: 2014-08-06

  Online published: 2015-06-28

Abstract

By using the observed meteorological and soil data from 1 March to 1 June 2013 at the Nagqu station of Plateau Climate and Environment over the Qinghai-Xizang Plateau as driving data, the simulation study of the freezing-thawing processes in the Nagqu area was conducted by the Common Land Model(CoLM). Comparison between the simulated and observed data show that the CoLM model can well reproduce the variation features of soil temperature, sensible heat flux and latent heat flux, but the simulated soil moisture has a huge deviation. The defect in frozen soil parameterization schemes may be the main reason for the deviation of soil moisture. According to the relationship between soil temperature and water potential under the equilibrium thermodynamics theory and Clapp-Hornberger empirical formula optimize the frozen parameterization scheme. After the frozen parameterization scheme was optimized, the results showed that the modified CoLM model can capture the characteristics of the freezing-thawing processes better, especially made a significant improvement in the soil moisture.

Cite this article

LIU Huolin , HU Zeyong , Yang Yaoxian , WANG Yu , SUN Genhou , HUANG Rong . Simulation of the Freezing-Thawing Processes at Nagqu Area over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2015 , 34(3) : 676 -683 . DOI: 10.7522/j.issn.1000-0534.2015.00021

References

[1]徐斅祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001: 9
[2]Burt T P, Williams P J. Hydraulic conductivity in frozen soils[J]. Earth Surface Processes, 1976, 1(4): 349-360.
[3]Goulden M L, Wofsy S C, Harden J W, et al. Sensitivity of boreal forest carbon balance to soil thaw[J]. Science, 1998, 279(5348): 214-217.
[4]王澄海, 董文杰, 韦志刚. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 2002, 17(1): 44-52.
[5]王澄海, 董文杰, 韦志刚. 青藏高原季节冻融过程与东亚大气环流关系的研究[J]. 地球物理学报, 2003, 46(3): 309-316.
[6]Slater A G, Pitman A J, Desborough C E. Simulation of freeze-thaw cycles in a general circulation model land surface scheme[J]. J Geophys Res: Atmospheres (1984-2012), 1998, 103(D10): 11303-11312.
[7]Cherkauer K A, Lettenmaier D P. Hydrologic effects of frozen soils in the upper Mississippi River basin[J]. J Geophys Res: Atmospheres (1984-2012), 1999, 104(D16): 19599-19610.
[8]Koren V, Schaake J, Mitchell K, et al. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models[J]. J Geophys Res: Atmospheres (1984-2012), 1999, 104(D16): 19569-19585.
[9]Niu G Y, Yang Z L. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J]. Journal of Hydrometeorology, 2006, 7(5): 937-952.
[10]张宇, 吕世华. 藏北高原陆面过程的模拟试验[J]. 大气科学, 2002, 26(3): 387-393.
[11]张宇, 宋敏红, 吕世华, 等. 冻土过程参数化方案与中尺度大气模式的耦合[J]. 冰川冻土, 2003, 25(5): 541-546.
[12]Luo S, Lü S, Zhang Y. Development and validation of the frozen soil parameterization scheme in Common Land Model[J]. Cold Regions Science and Technology, 2009, 55(1): 130-140.
[13]陈渤黎, 吕世华, 罗斯琼. CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(6): 1511-1522.
[14]王愚, 胡泽勇, 荀学义, 等. 藏北高原土壤热传导率参数化方案的优化和检验[J]. 高原气象, 2014, 32(3): 646-653, doi: 10.7522/j.issn.1000-0534.2013.00063.
[15]陈渤黎, 罗斯琼, 吕世华, 等. 黄河源区若尔盖站冻融期土壤温、 湿度的模拟与改进[J]. 高原气象, 2014, 33(2): 337-345, doi: 10.7522/j.issn.1000-0534.2013.00085.
[16]熊建胜, 张宇, 王少影, 等. CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J]. 高原气象, 2014, 33(2): 323-336, doi: 10.7522/j.issn.1000-0534.2014.00012.
[17]李倩, 孙菽芬. 通用的土壤水热传输耦合模型的发展和改进研究[J]. 中国科学(D辑), 2008, 37(11): 1522-1535.
[18]李燕, 刘新, 李伟平. 青藏高原地区不同下垫面陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(3): 581-591.
[19]陈晓磊, 杨梅学, 万国宁, 等. CLM3和SHAW模式在青藏高原中部NMQ站的模拟研究[J]. 冰川冻土, 2013, 35(2): 291-300.
[20]Dai Y, Zeng X, Dickinson R E, et al. The common land model[J]. Bull Amer Meteor Soc, 2003, 84(8): 1013-1023.
[21]Dai X P, Zeng X, Dickinson R E. The Common Land Model (CLM): Technical documentation and user's guide[Z]. Georgia Institute of Technology, Atlanta, 2001.
[22]Farouki O T. Thermal properties of soils(Series on rock and soil mechanics)[J]. Trans Tech Publication, Germany, 1986, 11: 136.
[23]Clapp R B, Hornberger G M. Empirical equations for some soil hydraulic properties[J]. Water Resources Research, 1978, 14(4): 601-604.
[24]Cosby B J, Hornberger G M, Clapp R B, et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research, 1984, 20(6): 682-690.
[25]Anderson E A. A point of energy and mass balance model of snow cover[R]. DTIC Document, 1976.
[26]Jordan R. A one-dimensional temperature model for a snow cover[R]. DTIC Document, 1991.
[27]Dai Yongjiu, Zeng Qingcun. A land surface model(IAP94)for climate studies part I: Formulation and validation in off-line experiments[J]. Adv Atmos Sci, 1997, 14(4): 433-460.
[28]Spaans E J A, Baker J M. The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic[J]. Soil Science Society of America Journal, 1996, 60(1): 13-19.
[29]周锁铨, 张翠, 王小宁, 等. 多层土壤温度模拟及其检验[J]. 南京气象学院学报, 2005, 27(2): 200-209.
[30]马柱国, 魏和林, 符淙斌. 土壤湿度与气候变化关系的研究进展与展望[J]. 地球科学进展, 1999, 14(3): 299-305.
Outlines

/