Projection of the Future Drought over Yunnan and Its Surrounding Areas by RegCM4

  • WANG Meili ,
  • GAO Xuejie ,
  • SHI Ying ,
  • GIORGI Filippo
Expand
  • Chinese Academy of Meteorological Science, Beijing 100081, China;2. National Climate Center, China Meteorological Administration, Beijing 100081, China;3. Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;4. Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Received date: 2013-12-03

  Online published: 2015-06-28

Abstract

Driven by the global climate model of BCC_CSM1.1, climate change over East Asia in the 21st century is simulated by a regional climate model, RegCM4.0, under the new emission scenarios of RCP (Representative Concentration Pathway). In the present study, the analysis is focused on Yunnan Province and its surrounding areas located in southwestern China. Simulations of present day climate (1986-2005) by RegCM4 are compared against observations to validate the model performance. The results show that RegCM4 can reproduce the observed annual cycle of the regional mean temperature and precipitation well, although a cold bias over the region and an overestimation of precipitation in the dry (cold) season can be found in the simulations. Significant warming and a general decrease of precipitation in both the dry (November to next April) and wet (May to October) seasons in the 21st century are projected by the model under RCP8.5 scenario. The changes show differences in spatial distribution in the two seasons. The drought events are measured by the indices of the maximum number of consecutive dry days (CDD), differences between precipitation and evaporation (P-E), and root zone soil water content (RSW). Analysis of their future changes indicates that the drought will continue and aggravate under the global warming. This is more profound in the dry season compared with the wet season.

Cite this article

WANG Meili , GAO Xuejie , SHI Ying , GIORGI Filippo . Projection of the Future Drought over Yunnan and Its Surrounding Areas by RegCM4[J]. Plateau Meteorology, 2015 , 34(3) : 706 -713 . DOI: 10.7522/j.issn.1000-0534.2014.00013

References

[1]程建刚, 晏红明, 严华生, 等. 云南重大气候灾害特征和成因分析[M]. 北京: 气象出版社, 2009: 1-12.
[2]程建刚, 解明恩. 近50年云南地区气候变化特征分析[J]. 地理科学进展, 2008, 127(5): 19-26.
[3]彭贵芬, 刘瑜. 云南各量级雨日的气候特征及变化[J]. 高原气象, 2009, 28(1): 214-219.
[4]符传博, 吴涧, 丹利. 近50年云南省雨日及降水量的气候变化[J]. 高原气象, 2011, 30(4): 1027-1033.
[5]彭京备, 张庆云, 布和朝鲁. 2006年川渝地区高温干旱特征及其成因分析[J]. 气候与环境研究, 2007, 12(3): 464-474.
[6]刘晓冉, 程炳岩, 杨茜, 等. 川渝地区夏季高温干旱变化特征及其异常年环流形势分析[J]. 高原气象, 2009, 28(2): 306-313.
[7]张万诚, 万云霞, 任菊章, 等. 水汽输送异常对2009年秋、 冬季云南降水的影响研究[J]. 高原气象, 2011, 30(6): 1534-1542.
[8]黄荣辉, 刘永, 王林, 等. 2009年秋至2010年春我国西南地区严重干旱的成因分析[J]. 大气科学, 2012, 36(3): 443-457.
[9]郑建萌, 张万诚, 万云霞, 等. 云南极端干旱年春季异常环流形势的对比分析[J]. 高原气象, 2013, 32(6): 1665-1672, doi: 10.7522/j.issn.1000-0534.2012.11143.
[10]孙国武, 李震坤, 冯建英. 西南地区两次严重干旱事件与大气低频振荡的研究[J]. 高原气象, 2014, 33(6): 1562-1567, doi: 10.7522/j.issn.1000-0534.2013.00166.
[11]IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013.
[12]高学杰, 徐影, 赵宗慈, 等. 数值模式不同分辨率和地形对东亚降水模拟影响的试验[J]. 大气科学, 2006, 3(2): 185-192.
[13]高学杰, 石英, 张冬峰, 等. RegCM3对21世纪中国区域气候变化的高分辨率模拟[J]. 科学通报, 2012, 57(5): 374-381.
[14]Giorgi F, Coppola E, Solmon F, et al. RegCM4: Model description and illustrative basic performance over selected CORDEX domains[J]. Climate Res, 2012, 52: 7-29.
[15]Xin X G, Wu T W, Li J L, et al. How well does BCC_CSM1.1 reproduce the 20th century climate change over China?[J]. Atmos Ocean Sci Lett, 2013, 6(1): 21-26.
[16]Pal J S, Giorgi F, Bi X Q, et al. Regional climate modeling for developing world: The ICTP RegCM3 and RegCNET[J]. Bull Amer Meteor Soc, 2007, 88(9): 1395-1409.
[17]张冬峰, 高学杰, 白虎志, 等. RegCM3模式对青藏高原地区气候的模拟[J]. 高原气象, 2005, 24(5): 714-720.
[18]邹旭东, 谢正辉, 史学丽, 等. 2003年夏季中国地区降水的模拟研究[J]. 高原气象, 2005, 24(5): 777-783.
[19]鲍艳, 吕世华, 左洪超, 等. RegCM3模式在西北地区的应用研究Ⅱ: 区域选择及参数化方案的敏感性[J]. 冰川冻土, 2006, 28(2): 175-182.
[20]屈鹏, 杨梅学, 郭东林, 等. RegCM3模式对青藏高原夏季气温和降水的模拟[J]. 高原气象, 2009, 28(4): 738-744.
[21]鞠丽霞, 郎咸梅. RegCM3_IAP9L-AGCM 对中国跨季度短期气候预测的回报试验研究[J]. 气象学报, 2012, 70(2): 244-252.
[22]Gao X J, Shi Y, Zhang D F, et al. Uncertainties of monsoon precipitation projection over China: Results from two high resolution RCM simulations[J]. Climate Res, 2012, 52: 213-226, doi:10.3354/cr01084.
[23]Liu K, Jiang D B, Ma J Y. Drought over China in the 21st Century: Results of RegCM3[J]. Atmos Ocean Sci Lett, 2012, 5(6): 509-513.
[24]郎咸梅, 隋月. 全球变暖2℃情景下中国平均气候和极端气候事件变化预估[J]. 科学通报, 2013, 58(8): 734-742.
[25]梁玲, 李跃清, 胡豪然, 等. 青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J]. 高原气象, 2013, 32(6): 1538-1545, doi: 10.7522/j.issn.1000-0534.2013.00028.
[26]罗小青, 杨梅学, 王学佳, 等. 两种积云参数化方案对青藏高原夏季降水影响的模拟[J]. 高原气象, 2014, 33(2): 313-322, doi: 10.7522/j.issn.1000-0534.2013.00177.
[27]Meinshausen M, Smith S J, Calvin K, et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300[J]. Climate Chang, 2011, 109(1-2): 213-241, doi:10.1007/s10584-011-0156-z.
[28]吉振明. 新排放情景下中国气候变化的高分辨率数值模拟研究[D]. 北京: 中国科学院青藏高原所, 2012: 1-137.
[29]Gao X J, Wang M L, Giorgi F. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0[J]. Atmos Ocean Sci Lett, 2013, 6(5): 381-386, doi:10.3878/j.issn.1674-2834.13.0029.
[30]Frich P, Alexander L V, Della-Marta P, et al. Observed coherent changes in climatic extremes during the second half of the twentieth century[J]. Climate Res, 2002, 19(3): 193-212.
[31]吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其他资料的对比[J]. 地球物理学报, 2013, 56(4): 1102-1111.
[32]叶柏生, 成鹏, 杨大庆, 等. 降水观测误差修正对降水变化趋势的影响[J]. 冰川冻土, 2008, 30(5): 717-725.
Outlines

/