Based on MODIS NDVI, linear and nonlinear algorithms (hereafter referred as GI and CR algorithms respectively) are used to calculate vegetation fraction over China, and these data are used in Weather Research and Forecasting Model (WRF). The effect of different vegetation fraction data derived from GI and CR algorithms on WRF's simulation in July 2006 over China is investigated. The results show that large deviation of vegetation fraction calculated by GI and CR appears in semi-arid regions, and corresponding, WRF simulation has significant difference in these regions. In arid and humid regions, small deviation is found relatively, and not significant difference for WRF simulation. Utilizing vegetation fraction derived from GI algorithm, WRF have less biases in near surface average and maximum temperature compared with observations, while less biases in minimum temperature and good performance of hot weather for CR. Using vegetation fraction data derived from CR algorithm, WRF can better describe average, daily variation and spatial pattern of precipitation. There are some differences of WRF's performance in different regions between two vegetation fraction algorithms. Overall, the use of CR produces better performance on temperature and precipitation.
[1]丁一汇, 李巧萍, 董文杰. 植被变化对中国区域气候影响的数值模拟研究[J]. 气象学报, 2005, 63(5): 613-621.
[2]范丽雅, 刘树华, 刘志辉, 等. 绿化带对城市大气环境及空气质量的影响[J]. 气候与环境研究, 2006, 11(1): 85-93.
[3]段翰晨, 颜长珍, 马如兰, 等. 兰州市南北两山生态建设效应的烟感监测[J]. 中国沙漠, 2011, 31(2): 456-463.
[4]苗正红, 刘志明, 王宗明, 等. 基于MODIS NDVI的吉林省植被覆盖度动态遥感监测[J]. 遥感技术与应用, 2010, 25(3): 387-393.
[5]张井勇, 董文杰, 叶笃正, 等. 中国植被覆盖度对夏季气候影响的新证据[J]. 科学通报, 2003, 48(1): 91-95.
[6]李巧萍, 丁一汇. 植被覆盖变化对区域气候影响的研究进展[J]. 南京气象学院学报, 2004, 27(1): 131-140.
[7]管晓丹, 郭铌, 黄建平, 等. 植被状态指数监测西北干旱的适用性分析[J]. 高原气象, 2008, 27(5): 1046-1053.
[8]张杰, 张强, 黄建平. 2007年5~10月黄土高原陆面能量通量特征研究[J]. 高原气象, 2010,29(4): 855-863.
[9]杨兴国, 张强, 王润元, 等. 陇中黄土高原夏季地表能量平衡观测研究[J]. 高原气象, 2004, 23(6): 828-834.
[10]王澄海, 黄宝霞, 杨兴国. 陇中黄土高原植被覆盖和裸露下垫面地表通量和总体输送系数研究[J]. 高原气象, 2007, 26(1): 30-38.
[11]Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. Int J Remote Sens, 1998, 19(8): 1533-1543.
[12]高艳红, 刘伟, 冉有华, 等. 黑河流域植被覆盖度计算及其影响的中尺度模拟[J]. 高原气象, 2007, 26(2): 270-277.
[13]何建军, 余晔, 陈晋北, 等. 植被覆盖度对兰州地区气象场影响的模拟研究[J]. 高原气象, 2012, 31(6): 1611-1621.
[14]程红芳, 章文波, 陈锋. 植被覆盖度遥感估算方法研究进展[J]. 国土资源遥感, 2008, 1: 13-18.
[15]Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sens Environ, 1979, 8(2): 127-150.
[16]Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sens Environ, 1997, 62(3): 241-252.
[17]Jiang Z Y, Huete A R, Chen J, et al. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction[J]. Remote Sens Environ, 2006, 101(3): 366-378.
[18]Hong S, Lakshmi V, Small E E, et al. Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model[J]. J Geophys Res: Atmospheres(1984-2012), 2009, 114: D18118.
[19]Wang W, Bruyere C, Duda M, et al. ARW Version 3 Modeling System User's Guide. Mesoscale & Miscroscale Meteorology Division[Z]. Boulder: National Center for Atmospheric Research, 2011.
[20]Hong S Y, Lim J O J. The WRF single-moment 6-class microphysics scheme[J]. Journal of the Korean Meteorological Society, 2006, 42(2): 129-151.
[21]Kain J S. The Kain-Fritsch convective parameterization: An update[J]. J Appl Meteor Climatol, 2004, 43(1): 170-181.
[22]Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for longwave[J]. J Geophys Res, 1997, 102(D14): 16663-16682.
[23]Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 1989, 46(20): 3077-3107.
[24]Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134(9): 2318-2341.
[25]Chen F, Mitchell K, Schaake J, et al. Modeling of land surface evaporation by four schemes and comparison with FIFE observations[J]. J Geophys Res, 1996, 101(3): 7251-7268.
[26]Jim nez P A, Dudhia J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model[J]. J Appl Meteor Climatol, 2012, 51(2): 300-316.
[27]Soares P M M, Cardoso R M, Miranda P M A, et al. WRF high resolution dynamical downscaling of ERA-Interim for Portugal[J]. Climate Dyn, 2012, 39(9-10): 2497-2522.
[28]Perkins S E, Pitman J A, Holbrook N J, et al. Evaluation of the AR4 climate models' simulated daily maximum temperature, minimum temperature, precipitation over Australia using probability density functions[J]. J Climate, 2007, 20(17): 4356-4376.
[29]Yuan X, Liang X Z, Wood E F. WRF ensemble downscaling seasonal forecasts of China winter precipitation during 1982-2008[J]. Climate Dyn, 2012, 39(7-8): 2041-2058.