Improvements of Building Energy Model and Anthropogenic Heat Release from Cooling System

  • ZHENG Yulan ,
  • MIAO Shiguang ,
  • ZHANG Qi ,
  • BAO Yunxuan
Expand
  • Nanjing University of Information Science &Technology, Nanjing 210044, China;2. Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China;3. Tsinghua University, Beijing 100084, China

Received date: 2014-01-09

  Online published: 2015-06-28

Abstract

Since the urbanlization in China is accelerating, the effect of heat-release of building cooling system on urban climate is bigger and bigger. Aimed at this situation, taking the case of 6-7 August 2010, (typical sunny day case in the Beijing area in summer), to carry out the research about the building energy model and the anthropogenic heat release of cooling system. It's found that the electrical energy consumption of different uses of the buildings has different diurnal variations, and it's also mostly related to meteorological factors. Based on these foundations, the simulation to energy consumption and heat-rejection of cooling system (air-condition) is performed with the modified Build Energy Model(BEM). Firstly, according to the features of the diurnal variations of electrical energy consumption, simulate the heat rejection of disparate uses of buildings. Analysis shows that among the thermal load, the percent of heat conducted by walls and windows is more than 60%, the rate of heat produced by humans and equipment is about 30% and received through the ventilation is 5%~6%. Secondly, a sensitivity analysis of a few parameters vastly affecting the result is carried out. The most important factor of building parameters is building height, when it varies from 18.3 m to 12 m and 6 m, the building heat-release will decrease 24.3% and 49.6% respectively. The second important parameters following building height are wall-conduction and ventilation coefficient.The heat-release can rapidly raise 94.4% while the target temperature falling from 25℃ to 24℃. Finally, the result of distribution of sensible heat and latent heat is calculated with the rate of the diverse air-condition in China, the value is 12.69 W·m-2 and 45.87 W·m-2 (about 22% of the peak value is sensible heat and the remaining part is latent heat in a single day). These results will laid the foundation for building thermal effect on urban climate research.

Cite this article

ZHENG Yulan , MIAO Shiguang , ZHANG Qi , BAO Yunxuan . Improvements of Building Energy Model and Anthropogenic Heat Release from Cooling System[J]. Plateau Meteorology, 2015 , 34(3) : 786 -796 . DOI: 10.7522/j.issn.1000-0534.2014.00035

References

[1]Iamarino M, Beevers S, Grimmond C S B. High-resolution (space, time) anthropogenic heat emissions: London 1970-2025[J]. Int J Climatol, 2012, 32(11): 1754-1767.
[2]Rosenzweig C, Solecki W D, Cox J, et al. Mitigating New York City's heat island: Integrating stakeholder perspectives and scientific evaluation[J]. Bull Amer Meteor Soc, 2009, 90(9): 1297-1312.
[3]张自银, 马京津, 雷杨娜. 北京市夏季电力负荷逐日变率与气象因子关系[J]. 应用气象学报, 2011, 22(6): 760-765.
[4]Ohashi Y, Genchi Y, Kondo H, et al. Influence of air-conditioning waste heat on air temperature in Tokyo during summer: numerical experiments using an urban canopy model coupled with a building energy model[J]. J Appl Meteor Climatol, 2007, 46(1): 66-81.
[5]Dhakal S, Hanaki K. Improvement of urban thermal environment by managing heat discharge sources and surface modification in Tokoyo[J]. Energy and Buildings, 2002, 34(1): 13-23.
[6]江亿, 燕达. 建筑环境系统模拟分析方法-DeST[M]. 北京: 中国建筑工业出版社, 2006.
[7]周强, 李国平. 边界层参数化方案对高原低涡东移模拟的影响[J]. 高原气象, 2013, 32(2): 334-344, doi: 10.7522/j.issn.1000-0534.2012.00033.
[8]Kikegawa Y, Genchi Y, Yoshikado H, et al. Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings' energy-demands[J]. Applied Energy, 2003, 76(4): 449-466.
[9]Kikegawa Y, Genchi Y, Kondo H, et al. Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-condition[J]. Applied Energy, 2006, 83(6): 649-668.
[10]Salamanca F, Krpo A, Martilli A, et al. A new building energy model coupled with an urban canopy parameterization for urban climate simulations-part I. formulation, verification, and sensitivity analysis of the model[J]. Theor Appl Climatol, 2010, 99(3-4): 331-344.
[11]Loridan T, Grimmond C, Grossman Clarke S, et al. Trade-offs and responsiveness of the single-layer urban canopy parametrization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations[J]. Quart J Roy Meteor Soc, 2010, 136(649): 997-1019.
[12]蒋德海, 王咏薇, 蒋维楣. 应用城市冠层模式对建筑物表面太阳辐射的分析[J]. 高原气象, 2010, 29(3): 614-620.
[13]潘小多, 李新, 冉有华, 等. 下垫面对 WRF 模式模拟黑河流域区域气候精度影响研究[J]. 高原气象, 2012, 31(3): 657-667.
[14]王腾蛟, 张镭, 胡向军, 等. WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J]. 高原气象, 2013, 32(5): 1261-1271, doi: 10.7522/j.issn.1000-0534.2012.00121.
[15]王颖, 张镭, 胡菊, 等. WRF 模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象, 2010, 29(6): 1397-1407.
[16]Salamanca F, Martilli A, Tewari M, et al. A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF[J]. J Appl Meteor Climatol, 2011, 50(5): 1107-1128.
[17]朱岳梅, 刘京, 姚杨, 等. 建筑物排热对城市区域热气候影响的长期动态模拟及分析[J]. 暖通空调, 2010, 40(1): 85-88.
[18]宁勇飞, 刘泽华, 陈刚. 外墙保温对夏热冬冷地区住宅空调负荷的影响[J]. 怀化学院学报, 2006, 25(5): 113-115.
[19]朱颖心. 用于空调系统设计的全年双负荷曲线分析法[J]. 暖通空调, 1998, 28(4): 43-46.
[20]成桂芳. 自然通风率的测量原理及热损失的计算[J]. 北京建筑工程学院学报, 1992, 8(2): 57-61.
[21]邓琴琴, 杨旭东, 高鹏. 建筑热环境和室内空气质量综合模拟软件介绍[J]. 建筑科学, 2009, 25(10): 1-5.
[22]唐振朝, 詹杰民. 室内空气环境的数值模拟与通风模式的评估[J]. 水动力学研究与进展(A 辑), 2004, 19(增刊1): 904-911.
[23]张春明, 高甫生. 北方地区建筑渗风能耗与传热能耗的比例分析[J]. 节能技术, 2002, 20(2): 26-28.
[24]Mcquiston F C, Parker J D, Spitler J D,et al. Heating, ventilating, and air conditioning: Analysis and design[J]. Proceedings of the Institution of Mechanical Engineers, 1994(2): 163.
[25]苗世光, 窦军霞, 李炬, 等. 北京城市地表能量平衡特征观测分析[J]. 中国科学: 地球科学, 2012, 42(9): 1394-1402.
[26]杨善勤, 胡磷, 陈启高. 建设部GB 50176-93 民用建筑热工设计规范[S]. 北京: 中国计划出版社, 1993.
[27]陈大宏, 钱小玉, 袁国杰, 等. 多层住宅建筑空调室外机散热对上层设备的影响[J]. 暖通空调, 2003, 33(3): 105-108.
[28]苗世光, Chen Fei. 城市地表潜热通量数值模拟方法研究[J]. 中国科学: 地球科学, 2014, 44(5): 1017-1025.
Outlines

/