Comparative Case Study on the Observations between the Space-borne Radar and Ground-based Radar

  • WANG Zhenhui ,
  • LI Shengyin ,
  • DAI Jianhua ,
  • LI Nan
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China;3. Shanghai Meteorological Center, Shanghai 200030, China

Received date: 2013-07-17

  Online published: 2015-06-28

Abstract

This paper obtained three cases of precipitation in Shanghai in the second half year of 2007 after applying the Geometry-matching method to do the Temporal-Spatial Matching of radar data derived from the precipitation radar (PR) on the TRMM (Tropical Rainfall Measuring Mission satellite) and from Shanghai Ground-based Radar (GR) in their effective sampling volume. To compare the difference between the volume-matched PR and GR radar reflectivity factor in consideration of the different frequencies of PR and GR, we adjust the echo intensity detected by Ground-based Radar (GR) which is in S-band to that value which is detected by Ku-band Radar (Ku-adjusted), and analyze the PR-GR deviation from different altitude layers and various precipitation types. The results show that: (1) The distribution and structure of PR are in accordance with GR echoes as a whole, whereas the PR echoes are more intense than the GR echoes generally. (2) Within and below the Bright-band, there is a high degree of correlation between PR and GR reflectivity data. (3) Due to the impact of beam filling and the attenuation of echoes, the mean deviation of PR-GR is larger in high altitude layer than in low altitude layer. (4) The variation characteristic of PR and GR echoes intensity has a higher degree of consistency from stratiform precipitation samples than convective precipitation samples. (5) In general, the GR data is closer to PR data after the Ku-adjusted.

Cite this article

WANG Zhenhui , LI Shengyin , DAI Jianhua , LI Nan . Comparative Case Study on the Observations between the Space-borne Radar and Ground-based Radar[J]. Plateau Meteorology, 2015 , 34(3) : 804 -814 . DOI: 10.7522/j.issn.1000-0534.2014.00031

References

[1]王改利, 刘黎平, 阮征, 等. 基于雷达回波拼图资料的风暴识别, 跟踪及临近预报技术[J]. 高原气象, 2010, 29(6): 1546-1555.
[2]史锐, 程明虎, 崔哲虎, 等. 长江流域多普勒雷达回波强度资料对比分析[J]. 气象, 2004, 30(11): 27-31.
[3]王振会. TRMM 卫星测雨雷达及其应用研究综述[J]. 气象科学, 2001, 21(4): 491-500.
[4]Wang J, Wolff D B. Comparisons of reflectivities from the TRMM precipitation radar and ground-based radars[J]. J Atmos Ocean Technol, 2009, 26(5): 857-875.
[5]何会中, 崔哲虎, 程明虎, 等. TRMM 卫星及其数据产品应用[J]. 气象科技, 2004, 32(1): 13-18.
[6]Kummerow C, Barnes W, Kozu T, et al. The tropical rainfall measuring mission (TRMM) sensor package[J]. J Atmos Ocean Technol, 1998, 15(3): 809-817.
[7]Wen Yixin, Cao Qing, KirstetterI P E, et al. Incorporating NASA spaceborne radar data into NOAA national mosaic QPE system for improved precipitation measurement: A physically based VPR identification and enhancement method[J]. Journal of Hydrometeorology, 2013, 14(4): 1293-1307.
[8]肖艳姣, 刘黎平. 新一代天气雷达网资料的三维格点化及拼图方法研究[J]. 气象学报, 2006, 64(5): 647-657.
[9]高晓荣, 梁建茵, 李春晖, 等. 多平台 (雷达、 卫星、 雨量计) 降水信息的融合技术初探[J]. 高原气象, 2013, 32(2): 549-555, doi: 10.7522/j.issn.1000-0534.2012.00052.
[10]刘志雄, 蔡荣辉, 邓见英, 等. 2008 年湖南冻雨成因研究[J]. 高原气象, 2013, 32(2): 456-467, doi: 10.7522/j.issn.1000-0534.2012.00044.
[11]李典, 白爱娟, 黄盛军. 利用TRMM 卫星资料对青藏高原地区强对流天气特征分析[J]. 高原气象, 2012, 31(2): 304-311.
[12]赵文静, 张宁, 汤剑平. 长江三角洲城市带降水特征的卫星资料分析[J]. 高原气象, 2011, 30(3): 668-674.
[13]崔林丽, 杨引明, 游然, 等. FY-3A/MWHS 数据在定量降水估计中的应用研究[J]. 高原气象, 2012, 31(5): 1439-1445.
[14]何会中, 程明虎, 周康军, 等. TRMM/PR 与香港雷达资料对比分析[J]. 气象, 2002, 28(10): 32-36.
[15]王成刚, 葛文忠, 魏鸣. TRMM PR雷达与阜阳雷达降水资料的对比研究[J]. 遥感学报, 2003, 7(4): 332-336.
[16]商建, 范学花, 杨汝良. TRMM 卫星测雨雷达与地基雷达的数据匹配问题研究[J]. 遥感技术与应用, 2009, 24(2): 164-166.
[17]刘黎平. 热带测雨卫星的星载雷达和地基雷达探测云回波强度及结构误差的模拟分析[J]. 气象学报, 2002, 60(5): 568-574.
[18]Bolen S M, Chandrasekar V. Quantitative cross validation of space-based and ground-based radar observations[J]. J Appl Meteor, 2000, 39(12): 2071-2079.
[19]Anagnostou E N, Morales C A, Dinku T. The use of TRMM precipitation radar observations in determining ground radar calibration biases[J]. J Atmos Ocean Technol, 2001, 18(4): 616-628.
[20]Schwaller M R, Morris K R. A ground validation network for the global precipitation measurement mission[J]. J Atmos Ocean Technol, 2011, 28(3): 301-319.
[21]GPM Ground Validation System. Validation Network Data Product User's Guide[M/OL]. GSFC, October 14, 2011.
[22]Awaka J, Iguchi T, Kumagai H, et al. Rain type classification algorithm for TRMM precipitation radar[C]//Geoscience and Remote Sensing, Remote Sensing-A Scientific Vision for Sustainable Development, IEEE International. 1997, 4: 1633-1635.
[23]Iguchi T, Meneghini R. Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data[J]. J Atmos Ocean Technol, 1994, 11(6): 1507-1516.
[24]Liao L, Meneghini R. Changes in the TRMM version-5 and version-6 precipitation radar products due to orbit boost[J]. J Meteor Soc Japan, 2009, 87(3): 93-107.
[25]张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 北京: 气象出版社, 2001: 1-511.
Outlines

/