Application in Classification of Precipitation Clouds Using Vertical Sounding Radar in Beijing

  • HUANG Yu ,
  • RUAN Zheng ,
  • LUO Xiuming ,
  • JI Lei
Expand
  • Beijing Weather Modification Office, Beijing 100089, China;2. Institute of Urban Meteorology, China Meteorokogical Administration, Beijing 100089, China;3. Beijing Key Laboratory of Cloud Precipitation and Water Resources, Beijing (Municipal) Meteorological Service, Beijing 100089, China;4. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;5. Guangde Meteorology Bureau, Anhui 242200, China;6. Institute of atmospheric physics, Chinese Academy of Sciences, Beijing 100029, China

Received date: 2013-10-15

  Online published: 2015-06-28

Abstract

Wind profile radar using coherent accumulation technology to improve radar sounding sensitivity, have being applied in precipitation cloud body vertical measurement, which can obtain high resolution entire spectrum information of cloud body return signal. On the basis of precipitation weather statistics for many years, aiming at characteristics of rainfall in Beijing Yanqing, a precipitation cloud classification scheme based on spectral parameter (echo intensity, velocity, spectral width) of wind profile radar have been put forward in this paper. Classification scheme divided precipitation data into shallow convection, shallow stratiform, deep convection, deep stratiform, transition-exclusive and transition-inclusive six types of precipitation. According to this classification scheme, by means of combining the wind profile radar data with dual polarization radar data and simultaneous rain gauge data, the paper analyzed two precipitation processes on September 1, 2012 and June 27, 2013 in Yanqing. The results show that, the vertical profiles of wind profile radar spectral parameter can describes the vertical structure of precipitation clouds accurately, the development trend of echo intensity and the trend of surface precipitation matched very well. When precipitation appears convection, the surface precipitation rate increased obviously, along with high speed region and high spectral width in upper air region. Using the wind profile radar-based classification scheme to distinguishing the type of clouds can reduce the probability of precipitation type misjudgment.

Cite this article

HUANG Yu , RUAN Zheng , LUO Xiuming , JI Lei . Application in Classification of Precipitation Clouds Using Vertical Sounding Radar in Beijing[J]. Plateau Meteorology, 2015 , 34(3) : 815 -824 . DOI: 10.7522/j.issn.1000-0534.2014.00014

References

[1]庄薇, 刘黎平, 王改利, 等. 青藏高原复杂地形区雷达估测降水方法研究[J]. 高原气象, 2013, 32(5): 1221-1235, doi: 10.7522/j.issn.1000-0534.2012.00118.
[2]李薇, 刘岩, 袁野, 等. 吉林省春季层状云降水的雷达观测研究[J]. 高原气象, 2013, 32(5): 1485-1491, doi: 10.7522/j.issn.1000-0534.2012.00138.
[3]李金辉, 罗俊颉, 梁谷, 等. 陕西关中地区层状云降水及雷达特征分析[J]. 高原气象, 2010, 29(6): 1571-1578.
[4]蔡兆新, 周毓荃, 蔡淼. 一次积层混合云系人工增雨作业的综合观测分析[J]. 高原气象, 2013, 32(5): 1460-1469, doi: 10.7522/j.issn.1000-0534.2012.00115.
[5]周晋红, 马鸿青, 孙少雄, 等. 山西一次低空偏东风暴雪天气结构特征分析[J].高原气象, 2014, 33(5): 1305-1314, doi: 10.7522/j.issn.1000-0534.2013.00087.
[6]王伏村, 许东蓓, 修韶宇, 等. 一次西北地区东部大暴雨的物理机制分析[J]. 高原气象, 2014, 33(6): 1501-1513, doi: 10.7522/j.issn.1000-0534.2013.00104.
[7]卢萍, 李跃清, 郑伟鹏, 等. 影响华南持续性强降水的西南涡分析和数值模拟[J]. 高原气象, 2014, 33(6): 1457-1467, doi: 10.7522/j.issn.1000-0534.2013.00137.
[8]孙永刚, 孟雪峰, 仲夏, 等. 河套气旋发展东移对一次北京特大暴雨的触发作用[J]. 高原气象, 2014, 33(6): 1665-1673, doi: 10.7522/j.issn.1000-0534.2013.00029.
[9]Steiner M, Houze Jr R A. Sensitivity of the estimated monthly convective rain fraction to the choice of Z-R relation[J]. J Appl Meteor, 1997, 36(5): 452-462.
[10]Rao T N, Rao D N, Mohan K, et al. Classification of tropical precipitation systems and associated Z-R relationships[J]. J Geophys Res, 2011, 106(D16): 17699-17711.
[11]洪延超, 李宏宇. 一次锋面层状云云系结构、 降水机制及人工增雨条件研究[J]. 高原气象, 2011, 30(5): 1308-1323.
[12]居丽玲, 牛生杰, 段英, 等. 石家庄地区一次秋季冷锋云系垂直微物理结构的观测研究[J]. 高原气象, 2011, 30(5): 1324-1336.
[13]戴进, 余兴, 刘贵华, 等. 青藏高原雷暴弱降水云微物理特征的卫星反演分析[J]. 高原气象, 2011, 30(2): 288-298.
[14]张昕, 高守亭, 王瑾. 2008年1月贵州冻雨的数值模拟和层结结构分析[J]. 高原气象, 2015, 34(2): 368-377, doi: 10.7522/j.issn.1000-0534.2013.00189.
[15]Baldwin M E, Kain J S, Lakshmivarahan S. Development of an automated classification procedure for rainfall systems[J]. Mon Wea Rev, 2005, 133(4): 844-862.
[16]Atlas D C, Ulbrich W, Marks Jr F D, et al. Partitioning tropical oceanic convective and stratiform rains by draft strength[J]. J Geophys Res, 2000, 105(2): 2259-2267.
[17]Tokay A, Short D A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds[J]. J Appl Meteor, 1996, 35(3): 355-371.
[18]Houze Jr R A. Stratiform precipitation in regions of convection:A meteorological paradox? [J]. Bull Amer Meteor Soc,1997,78(10): 2179-2196.
[19]Steiner M, Richner H, Yuter S E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data[J]. J Appl Meteor, 1995, 34(9): 1978-2007.
[20]阮征, 葛润生, 吴志根. 风廓线仪探测降水云体结构方法的研究[J]. 应用气象学报, 2002, 13(3): 330-338.
[21]王晓蕾, 阮征, 葛润生, 等. 风廓线雷达探测降水云体中雨滴谱的试验研究[J]. 高原气象, 2010, 29(2): 498-505.
[22]Williams C R, Ecklund W L, Gage K S. Classification of precipitating clouds in the tropics using 915-MHz wind profilers[J]. J Atmos Oceanic Technol, 1995, 12(5): 996-1012.
[23]Narayana R T, Kirankumar N V P, Radhakrishna B, et al. Classification of tropical precipitating systems using wind profiler spectral moments[J]. J Atmos Oceanic Technol,2008, 25(6): 884-897.
[24]Davin G L, Steven A R, Christopher R W. Vertical structure of systems during NAME 2004[J]. Mon Wea Rev, 2010,138: 1695-1714.
[25]黄钰, 阮征, 葛润生, 等. 2010年夏季北京零度层亮带识别特征统计[J]. 气象, 2013, 39(6): 751-757.
Outlines

/