Influence of Frequency Assimilation with Radar Data in Southwest Vortex Rainstorm

  • QIN Yuefeng ,
  • GU Jianfeng ,
  • WU Zheng ,
  • LIU Haiwen ,
  • CHEN Guichuan ,
  • ZHANG Yaping
Expand
  • College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China;2. Chongqing Institute of meteorological Sciences, Chongqing 401147, China;3. China Meteorological Administration, Beijing 100081, China;4. Chongqing Meteorological Observatory, Chongqing 401147, China

Received date: 2013-10-17

  Online published: 2015-08-28

Abstract

In order to analyze the effect of rainfall forecast and initial field with the radar data assimilation and different assimilating intermittence in the Southwest Vortex rainstorm process, this paper illustrates the single time and multiple times cycle assimilating experiments in the southwest vortex rainstorm process on 21 July 2012 by assimilating the Chongqing Doppler radar data with the three-dimensional variable data assimilation system (ARPS-3DVAR) and complex cloud analysis scheme of the ARPS model. The result show that: (1) Assimilating radar data, model initial field depict the strong center and distribution of the echo, increasing the meso- and micro-scale systems information. Multiple times cycle assimilation experiments have β meso-scale cyclonic vortex, and work with the lower layer convergence, it enhances the ascending motion and develops the southwest vortex. (2) In prediction field, it greatly improve the situation that no rainfall at the period forecast after assimilating radar data. The 18 min assimilation intermittence experiment does the best rainfall forecast and gets the highest score, as is followed by 12 min, 6 min, single time and 24 min assimilation experiment. (3) The maximum vertical velocity reach maximum value by forecasting 18 min after continues assimilating, it shows that the model takes 18 minutes to adjust a suitable dynamic and thermodynamic constrains among different variables and to achieve a balance condition.When cycle assimilation is shorter or longer than 18 minutes, the mode will be badly effect.This may be the reason why the 18 min assimilation experiment have a better forecast of the rainfall and the highest TS score.

Cite this article

QIN Yuefeng , GU Jianfeng , WU Zheng , LIU Haiwen , CHEN Guichuan , ZHANG Yaping . Influence of Frequency Assimilation with Radar Data in Southwest Vortex Rainstorm[J]. Plateau Meteorology, 2015 , 34(4) : 963 -972 . DOI: 10.7522/j.issn.1000-0534.2014.00050

References

[1]顾建峰. 多普勒雷达资料三维变分直接同化方法研究[D]. 南京:南京信息工程大学. 2006.
[2]王遂缠, 胡向军, 张新荣, 等. 雷达资料同化在甘肃局地暴雨天气个例中的应用[J]. 高原气象, 2011, 30(3):711-718.
[3]徐广阔, 孙建华, 雷霆, 等. 多普勒天气雷达资料同化对暴雨模拟的影响[J]. 应用气象学报, 2011, 20(1):36-45.
[4]盛春岩, 浦一芬, 高守亭. 多普勒天气雷达资料对中尺度模式短时预报的影响[J]. 大气科学, 2006, 30(1):93-107.
[5]张蕾, 王振会, 杨艳蓉. 多普勒天气雷达资料在数值模式ARPS中的试验[J]. 气象科学, 2011, 31(5):567-575.
[6]杨艳蓉, 王振会, 张沛源. 利用多普勒天气雷达资料对一次暴雨过程的同化模拟[J].南京气象学院学报, 2008, 31(5):633-639.
[7]梁旭东, 王斌. 基于模式约束三维变分技术的连续循环同化试验研究[J]. 气象学报, 2010, 98(2):153-161.
[8]Hu Ming, Xue Ming. Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case[J]. Mon Wea Rev, 2007, 135(2):507-525.
[9]江玉华, 何跃, 邓承之, 等. 重庆市大范围暴雨与西南低涡[C]//第26届中国气象学会年会灾害天气事件的预警、预报及防灾减灾分会场论文集. 北京:中国气象学会, 2009:2441-2447.
[10]高守亭. 流场配置及地形对西南低涡形成的动力作用[J]. 大气科学, 1987, 11(3):263-271.
[11]李国平, 万军, 卢敬华. 暖性西南低涡生成的一种可能机制[J]. 应用气象学报, 1991, 2(1):91-99.
[12]卢敬华. 西南低涡概论[M]. 北京:气象出版社, 1986:129-146.
[13]卢敬华. 利用热成风适应原理对暖性西南低涡生成机制的再分析[J]. 高原气象, 1988, 7(4):345-356.
[14]邹波, 陈忠明. 一次西南低涡发生发展的中尺度诊断[J]. 高原气象, 2000, 19(2):141-149.
[15]陈忠明, 闵文彬, 缪强, 等. 高原涡与西南涡耦合作用的个例分析[J]. 高原气象, 2004, 23(1):75-80.
[16]蒋璐君, 李国平, 母灵, 等. 基于TRMM资料的西南涡强降水结构分析[J]. 高原气象, 2014, 33(3):607-614, doi:10.7522/j.issn.1000-0534.2013.00094.
[17]马红, 郑翔飚, 胡勇, 等. 一次西南涡引发MCC暴雨的卫星云图和多普勒雷达特征分析[J]. 大气科学学报, 2010, 33(6):688-696.
[18]宗志平, 陈涛, 徐臖, 等. 2012年初秋四川盆地两次西南涡暴雨过程的对比分析与预报检验[J]. 气象, 2013, 39(5):567-576.
[19]周国兵, 沈桐立, 韩余. 重庆"9·4"特大暴雨天气过程数值模拟分析[J]. 气象科学, 2006, 26(5):572-577.
[20]张虹, 李国平, 王曙东. 西南涡区域暴雨的中尺度滤波分析[J]. 高原气象, 2014, 33(2):361-371, doi:10.7522/j.issn.1000-0534.2013.00016.
[21]卢萍, 李跃清, 郑伟鹏, 等. 影响华南持续性强降水的西南涡分析和数值模拟[J]. 高原气象, 2014, 33(6):1457-1467, doi:10.7522/j.issn.1000-0534.2013.00137.
[22]陈贵川, 谌芸, 张勇, 等. "12·7·21"西南涡极端强降雨的成因分析[J]. 气象, 2013, 39(12):1529-1541.
[23]Xue Ming, Droegemeier K K, Wong V, et al. ARPS version 4.0 user's guide[Z]. Norman:Center for Analysis and Prediction of Storms, University of Oklahoma, 1995:100.
[24]Xue Ming, Droegemeier K K, Wong V, et al. The Advanced Regional Prediction System (ARPS)-A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I:Model dynamics and verification[J]. Meteor Atmos Phys, 2000, 75(3-4):161-193.
[25]Xue Ming, Droegemeier K K, Wong V, et al. The Advanced Regional Prediction System (ARPS)-A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II:Model physics and Applications[J]. Meteor Atmos Phys, 2000, 76(3-4):143-166.
[26]Zhang J, Carr F H, Brewster K. ADAS cloud analysis[C]. Preprints 12<sup>th</sup> Conference on Numerical Weather Prediction, Phoenix, Amer Meteor Soc, 1998:185-188.
[27]Hu Ming, Xue Ming. 3DVAR and cloud analysis with WSR-88D level-Ⅱ data for the prediction of the Fort Worth, Texas, Tornadic thunderstorms. Part Ⅰ:Cloud analysis and its impact[J]. Mon Wea Rev. 2006, 134(2):675-698.
[28]Hu Ming, Xue Ming. 3DVAR and cloud analysis with WSR-88D level-Ⅱdata for the prediction of the Fort Worth, Texas, Tornadic thunderstorms. Part Ⅱ:Impact of radial velocity analysis via 3DVAR[J]. Mon Wea Rev. 2006, 134(2):699-721.
Outlines

/