By using the precipitation data of the main convective weather processes from the year of 2004 to 2010 in Northwest China, the basic situation configuration of northwest convective weather is divided into three categories by different dominant factors. And, we analyzed the salient features of these three configurations in the field of synoptic-scale environment and the different roles which these features are played in mesoscale convective systems. Meantime, we summarized the main differences among these configurations and also the differences with other regional convective weather configurations. The primary conclusions are as follow: The strong convective weather which is forced by upper air cold advection shows that cold advection may extend downward from 300 hPa to 700 hPa, and 850 hPa is mostly weak warm advection. Compared such kind of convective weather with that occur in the central, eastern of China, temperature lapse rate in the lower troposphere is greater; instability stratification can be stronger in the afternoon;and LFC is higher. Regional convective weather is often associated with ground humidification after large-scale precipitation or low altitude warm air moving northward;local strong convective weather is associated with ground uplift of complex terrain and uneven distribution of water vapor. The strong convection weather which is forced by low level warm advection shows that warm advection plays a dominant role in the lower and wet layer extends from ground upward to near 500 hPa, LFC height is lower significantly. The temperature lapse rate in the lower troposphere is less than the rate in the first situation configuration. The most notable feature of the baroclinic frontogenesis convective weather is the intense interaction between cold and warm air in the lower level, which accompanied with significant temperature frontal zone and frontogenesis. Moisture condition is better than the first situation configuration, vertical wind shear is stronger than the previous two categories significantly.
XU Dongbei
,
XU Aihua
,
XIAO Wei
,
SHA Honge
,
WAN Xueli
,
CHE Yuchuan
,
JI Huimin
. Comprehensive Analysis on the Severe Convective Weather Situation Configuration and Its Particularity in Northwest China[J]. Plateau Meteorology, 2015
, 34(4)
: 973
-981
.
DOI: 10.7522/j.issn.1000-0534.2014.00102
[1]丁一汇,李鸿洲,章名立,等.我国飑线发生条件研究[J].大气科学,1982,6(1):18-27.
[2]王锡稳,陶健红,刘治国,等."5·26"甘肃局地强对流天气过程综合分析[J].高原气象,2004,23(6):815-820.
[3]刘勇.陕西一次槽前强对流风暴的诊断分析[J].高原气象,2006,25(4):687-695.
[4]王伏村,李辉,牛金龙,等.甘肃河西走廊两次强对流天气对比分析[J].气象,2008,34(1):48-54.
[5]许新田,王楠,刘瑞芳,等.2006年陕西两次强对流冰雹天气过程的对比分析[J].高原气象,2010,29(2):447-460.
[6]张之贤,张强,赵庆云,等. "8·8"舟曲特大山洪泥石流灾害天气特征分析[J].高原气象,2013,32(1):290-297,doi:10.7522/j.issn.1000-0534.2013.00028.
[7]纪晓玲,刘庆军,刘建军,等.一次蒙古冷涡影响下宁夏强对流天气分析[J].干旱气象,2005,23(1):26-32.
[8]吉惠敏,冀兰芝,王锡稳,等.一次强对流天气综合分析[J].干旱气象,2006,24(2):12-18.
[9]王建兵,王振国,李晓媛,等.甘南高原一次突发性强对流天气的诊断分析[J].干旱气象,2007,25(3):54-60.
[10]张一平,俞小鼎,孙景兰,等.一次槽后型大暴雨伴冰雹的形成机制和雷达观测分析[J].高原气象,2014,33(4):1093-1104,doi:10.7522/j.issn.1000-0534.2012.00200.
[11]端木礼寅,李照荣,张强,等.甘肃中部强对流天气多普勒雷达和闪电特征个例研究[J].高原气象,2004,23(6):764-772.
[12]付双喜,王致君,张杰,等.甘肃中部一次强对流天气的多普勒雷达特分析[J].高原气象,2006,25(5):932-941.
[13]罗慧,刘勇,冯桂力,等.陕西中部一次超强雷暴天气的中尺度特征及成因分析[J].高原气象,2009,28(4):816-826.
[14]潘留杰,张宏芳,王楠,等.陕西一次强对流天气过程的中尺度及雷达观测分析[J].高原气象,2013,32(1):278-289,doi:10.7522/j.issn.1000-0534.2013.00027.
[15]吴爱敏,薛塬轩,白爱军,等. 庆阳2次强对流天气过程的新一代雷达资料对比分析[J].干旱气象,2007,25(2):43-50.
[16]徐阳春,陆晓静,沈阳,等.2003~2004年强对流灾害性天气多普勒天气雷达产品特征分析[J].干旱气象,2005,23(1):40-44.
[17]陈英英,唐仁茂,李德俊,等.利用雷达和卫星资料对一次强对流天气过程的云结构特征分析[J].高原气象,2013,32(4):1148-1156,doi:10.7522/j.issn.1000-0534.2012.00108.
[18]李晓霞,康风琴,张铁军,等.甘肃一次强对流天气的数值模拟和分析[J].高原气象,2007,26(5):1077-1085.
[19]井喜,胡春娟.位涡诊断在黄土高原强对流风暴预报中的应用[J].气象科技,2007,35(1):20-25.
[20]郭大梅,杨文峰,杨帅,等.一次强对流天气过程等熵位涡及数值分析[J].干旱区研究,2010,27(5):793-800.
[21]杨东宏,刘建雄,曹灵芝,等.2006·09·21陕北强对流数值模拟与诊断分析[J]. 陕西气象,2007(3):16-19.
[22]陶建玲,郭大梅,许新田,等.湿位涡在陕西一次强对流天气中的应用分析[J].陕西气象,2008(6):19-22.
[23]王秀明,钟青,韩慎友.一次冰雹天气强对流(雹)云演变及超级单体结构的个例模拟研究[J].高原气象,2009,28(2):352-365.
[24]朱乾根,林锦瑞,寿绍文,等.天气学原理及方法[M].北京:气象出版社,1981:70-76.