Initiation and Evolution of Storm over Loess Plateau for Weak Synoptic Forcing Situations

  • PAN Liujie ,
  • ZHANG Hongfang ,
  • HOU Jianzhong ,
  • YUAN Xiaolin
Expand
  • Shaanxi Meteorological Observatory, Xi'an 710014, China;2. Shaanxi Meteorological Service Centre, Xi'an 710014, China;3. Shiquan Country Meteorological Bureau, Shiquan 725200, China

Received date: 2013-10-08

  Online published: 2015-08-28

Abstract

Using Thunderstorm Identification Tracking Analysis and Nowcasting System (TITAN) that developed by NCAR, the storm initiation and evolution over the loess plateau were analyzed. The results show that: (1) Forced by weak synoptic system in summer, the most common initiation mechanism of convective cloud over the loess plateau was terrain forcing, the remaining triggering mechanism followed by dry line, convergence line, warm area and clod pool. (2) Appropriate humidity is a key condition for triggering convective. If there is the humidity gradient values, even though dynamic force and heating power are weak, much convective cloud may form. However, when the uplifting power is weak, the convective cloud can't develop further. (3) The effect of topography, warm area and boundary layer convergence line is to speed up the occurring of the convective cloud and to strengthen it. However, all these factors affect it differently in different time of a day, topographic lifting having strong influence in the morning, the force of warm areas increasing around 12:00(local time), boundary layer convergence line functioning mainly in the afternoon. By analyzing many similar cases, a conceptual model of storm initiation and evolution is also presented.

Cite this article

PAN Liujie , ZHANG Hongfang , HOU Jianzhong , YUAN Xiaolin . Initiation and Evolution of Storm over Loess Plateau for Weak Synoptic Forcing Situations[J]. Plateau Meteorology, 2015 , 34(4) : 982 -990 . DOI: 10.7522/j.issn.1000-0534.2014.00015

References

[1]Weckwerth T M. The effect of small-scale moisture variability on thunderstorm initiation[J]. Mon Wea Rev, 2000, 128(11):4017-4030.
[2]Lynn B H, David R, Peter S, et al. Improved simulation of Florida summer convection using the PLACE land model and a 1. 5-order turbulence parameterization coupled to the Penn State-NCAR mesoscale model[J]. Mon Wea Rev, 2001, 129(6):1441-1461.
[3]Lin P F, Chang P L, Jou B D. Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island[J]. Wea Forecasting, 2011, 26(2):44-60.
[4]Olsen D A, Junker N W, Korty B. Evaluation of 33 years of quantitative precipitation forecasting at the NMC[J]. Wea Forecasting, 1995, 10(3):498-511.
[5]Fritsch J M, Carbone R E. Improving quantitative precipitation forecasts in the warm season:An USWRP research and development strategy[J]. Bull Amer Meteor Soc, 2004, 85(7):955-965.
[6]Wakimoto R M, Murphey H V. Analysis of a dryline during IHOP:Implications for convection initiation[J]. Mon Wea Rev, 2009, 137(3):912-935.
[7]Wilson J W, Schreiber W E. Initiation of convective storms at radar-observed boundary layer convergence lines[J]. Mon Wea Rev, 1986, 114(12):2516-2536.
[8]Lima M A, Wilson J W. Convective storm initiation in a moist tropical environment[J]. Mon Wea Rev, 2008, 136(4):1847-1864.
[9]Bodine D, Heinselman P L, Cheong B L, et al. A case study on the impact of moisture variability on convection initiation using radar refractivity retrievals[J]. J Appl Meteor Climatol, 2010, 49 (8):1766-1778.
[10]Roberts R D, Rutledge S. Nowcasting storm initiation and growth using GOES-8 and WSR-88D data[J]. Wea Forecasting, 2003, 18(4):562-584.
[11]王福侠, 裴宇杰, 杨晓亮, 等. "090723"强降水超级单体风暴特征及强风原因分析[J]. 高原气象, 2011, 30(6):1690-1700.
[12]陈英英, 唐仁茂, 李德俊, 等. 利用雷达和卫星资料对一次强对流天气过程的云结构特征分析[J]. 高原气象, 2013, 32(4):1148-1156, doi:10.7522/j.issn.1000-0534.2012.00108.
[13]刘勇, 王楠, 刘黎平. 陕西两次阵风锋的多普勒雷达和自动气象站资料分析[J]. 高原气象, 2007, 26(4):380-387.
[14]姚叶青, 郝莹, 张义军, 等. 安徽龙卷发生的环境条件和临近预警[J]. 高原气象, 2012, 31(6):1721-1729.
[15]潘留杰, 张宏芳, 王楠, 等. 陕西一次强对流天气过程的中尺度及雷达观测分析[J]. 高原气象, 2013, 32(1):278-289, doi:10.7522/j.issn.1000-0534.2012.00188.
[16]张怡, 赵志宇. 豫东地区"6.3"与"7.17"两次致灾大风雷达资料对比分析[J]. 高原气象, 2012, 31(2):515-529.
[17]潘留杰, 朱伟军, 周毓荃, 等. 环北京地区八月风暴云的气候分布特征[J]. 高原气象, 2010, 29(6):1579-1586.
[18]李宏宇, 张强, 史晋森, 等. 黄土高原自然植被下垫面陆面过程参数研究[J]. 气象学报, 2012, 70(5):1137-48.
[19]张之贤, 张强, 赵庆云, 等. 8.8"舟曲特大山洪泥石流灾害天气特征分析[J]. 高原气象, 2013, 32(1):290-297, doi:10.7522/j.issn.1000-0534.2012.00028.
[20]王文, 程攀. "7.27"陕北暴雨数值模拟与诊断分析[J]. 大气科学学报, 2013, 36(2):174-183.
[21]Dixon M, Wiener G. Titan:Thunderstorm identification, tracking, analysis, and nowcasting-a radar-based methodology[J]. J Atmos Oceanic Technol, 1993, 10(6):785-796.
[22]周毓荃, 潘留杰, 张亚萍. TITAN系统的移植开发及个例应用[J]. 大气科学学报, 2009, 32(6):752-764.
[23]Johnson J T, Mackeen P L, Witt A, et al. The Storm Cell Identification and Tracking Algorithm:An Enhanced WSR-88D Algorithm[J]. Wea Forecasting, 1998, 263(5):562-584.
[24]王瑾, 李明元, 汪华. 基于多雷达三维插值格点强冰雹诊断因子的强冰雹识别方法[J]. 高原气象, 2010, 29(6):1533-1545.
[25]王叶红, 赖安伟, 林春泽, 等. 基于GRAPES-MESO模式的非静力三维变分同化方案性能分析[J]. 高原气象, 2013, 32(3):689-706, doi:10.7522/j.issn.1000-0534.2012.00065.
Outlines

/