Fact and Simulation of Dust Aerosol Transported to Stratosphere during a Strong Dust Storm in South Xinjiang

  • ZHANG Jie ,
  • TIAN Wenshou ,
  • LONG Xiao ,
  • TIAN Hongying ,
  • HUANG Qian ,
  • XU Pingping ,
  • YANG Qin ,
  • ZHANG Jiankai
Expand
  • Key Laboratory of Semi-Arid Climate Chang, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

Received date: 2014-01-03

  Online published: 2015-08-28

Abstract

Using NCEP reanalysis data and satellite observations, together with a mesoscale chemical transport model(WRF-Chem), a dust event occurred in the Taklimakan desert, north of the Qinghai-Xizang Plateau on April 17, 2007 is analyzed in an attempt to understand the characteristics and mechanisms of dust aerosol transport from the surface to the upper troposphere and the lower stratosphere over Qinghai-Xizang Plateau and its vicinity. Differences in the transport of particles with different sizes are also discussed. The results indicate that: Vertical transport of dust aerosols is closely related to background horizontal winds. In the absence of the cloud microphysical processes, when a deep convergence zone of northerly and southerly winds forms over Qinghai-Xizang Plateau, the vertical motions resulted from the convergence could transport dust aerosols, originated from the Taklimakan desert, to the lower stratosphere with an evident inclined transport pathway. The result implies that the position of the dust reached the lower stratosphere may not collocate with the surface dust source. In addition, dust particles with different sizes present different transfer characteristics. Small dust particles can be transported to the stratosphere relative easily by upward motions, while particles with size larger than 8.0 μm could not be transported to the lower stratosphere due to strong deposition process. The results from a sensitivity experiment with decreased orography height show that the upward and southward transport of dust aerosols is depressed when orography height is decreased.

Cite this article

ZHANG Jie , TIAN Wenshou , LONG Xiao , TIAN Hongying , HUANG Qian , XU Pingping , YANG Qin , ZHANG Jiankai . Fact and Simulation of Dust Aerosol Transported to Stratosphere during a Strong Dust Storm in South Xinjiang[J]. Plateau Meteorology, 2015 , 34(4) : 991 -1004 . DOI: 10.7522/j.issn.1000-0534.2014.00103

References

[1]Huang Jianping,Minnis Patrick,Lin Bin,et al. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES[J]. Geophys Res Lett,2006,33(6):272-288,doi:10.1029/2005GL024724.
[2]石广玉,王标,张华,等. 大气气溶胶的辐射和气候效应[J]. 大气科学,2008,32(4):826-840.
[3]Albrecht B A. Aerosols,cloud microphysics,and fractional cloudiness[J]. Science,1989,245,1227-1230.
[4]Forster P,Ramaswamy V,Artaxo P,et al. Changes in atmospheric constituents and in radiative forcing[J]. Climate Change,2007.
[5]宿兴涛,王汉杰,宋帅,等. 近10年东亚沙尘气溶胶辐射强迫与温度响应[J]. 高原气象,2011,30(5):1300-1307.
[6]Huang Jianping,Minnis Patrick,Chen Bin,et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J]. J Geophy Res,2008,113(D23):2036-2044.
[7]Uno Itsushi,Kenta Eguchi,Keiya Yumimoto,et al. Asian dust transported one full circuit around the globe[J]. Nature Geoscience,2009,2:557-560,doi:10.1038/ngeo583.
[8]Liu Ming,Westphal D L,Wang Shigong,et al. A high-resolution numerical study of the Asian dust storms of April 2001[J]. J Geophys Res,2003,108(D23),8653,doi:10.1029/2002JD003178,2003.
[9]姜学恭,陈受钧,顾润源,等. 沙尘暴过程中沙尘对流层-平流层输送的数值模拟初步分析[J]. 气象学报,2012,70(6):1223-1234.
[10]Zhou Jun,Yu Guming,Jin Chuanjia,et al. Lidar observations of Asian dust over Hefei,China,in spring 2000[J]. J Geophys Res:Atmospheres (1984-2012),2002,107(D15):AAC 5-1-AAC 5-8.
[11]Vernier J P,Thomason L W,Kar J. CALIPSO detection of an Asian tropopause aerosol layer[J]. Geophys Res Lett,2011,38(7):1451-1453.
[12]张少波,陈玉春,吕世华,等. 青藏高原植被变化对中国东部夏季降水影响的模拟研究[J]. 高原气象,2013,32(5):1236-1245,doi:10.7522/j.issn.1000-0534.2012.00119.
[13]梁玲,李跃清,胡豪然,等. 青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J]. 高原气象,2013,32(6):1538-1545,doi:10.7522/j.issn.1000-0534.2013.00028.
[14]Steinwagner Jorg,Milz Mathias,Thomas von Clarmann,et al. HDO measurements with MIPAS[J]. Atmospheric Chemistry and Physics,2007,7(10):2601-2615.
[15]Zhan R F,Li J P. Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the stratosphere-troposphere exchange of water vapor[J]. Science in China:Earth Sciences,2008,51(8):1179-1193.
[16]丛春华,李维亮,周秀骥.青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换[J].科学通报,2001,46(22):1914-1918.
[17]Fu Rong,Hu Yuanlong,Jonathon S. Wright,et al. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(15):5664-5669.
[18]陈洪滨,卞建春,吕达仁.上对流层-下平流层交换过程研究的进展与展望[J].大气科学,2006,30(5):813-820.
[19]吕达仁,陈泽宇,卞建春,等. 平流层对流层相互作用的多尺度过程特征及其与天气气候关系研究进展[J]. 大气科学,2008,32(4):782-793.
[20]吕达仁,卞建春,陈洪滨,等. 平流层大气过程研究的前沿与重要性[J]. 地球科学进展,2009,24(3):221-228.
[21]田红瑛,田文寿,雒佳丽,等. 青藏高原地区上对流层-下平流层区域水汽分布和变化特征[J]. 高原气象,2014,33(1):1-13,doi:10.7522/j.issn.1000-0534.2013.00074.
[22]张小曳. 亚洲粉尘的源区分布,释放,输送,沉降与黄土堆积[J]. 第四纪研究,2001,21(1):29-40.
[23]Zhang X Y,Arimoto R,An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation[J]. J Geophys Res,1997,102(D23):28041-28047,doi:10.1029/97JD02300.
[24]王宏,石广玉,Aoki T,等. 2001年春季东亚-太平洋地区气溶胶的辐射强迫[J]. 科学通报,2004,49(19):1993-2000.
[25]姜学恭,云静波.三类沙尘暴过程环流特征和动力结构对比分析[J].高原气象,2014,33(1):241-251,doi:10.7522/j.issn.1000-0534.2012.00172.
[26]王存忠,牛生杰,王兰宁. 50年来中国沙尘暴的多时问尺度变化特征[J].大气科学学报,2009,32(4):507-512.
[27]王存忠,牛生杰,王兰宁. 中国50a来沙尘暴变化特征[J]. 中国沙漠,2010,30(4):933-939.
[28]Paul Ginoux,Prospero J M,Omar Torres,et al. Long-term simulation of global dust distribution with the GOCART model:correlation with North Atlantic Oscillation[J]. Environmental Modelling & Software,2004,19(2):113-128.
[29]Marticorena B,Bergametti G. Modeling the atmospheric dust cycle. 1. Design of a 653 soil-derived dust emission scheme[J]. J Geophys Res,1995,100(D8):16415-16430.
[30]Chen Siyu,Huang Jianping,Zhao Chun,et al. Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau:A case study in the summer of 2006[J]. J Geophys Res,2013,118(2):797-812,doi:10.1002/jgrd.50122.
[31]Hong S Y,Dudhia J,Chen S H. A revised approach to Ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon Wea Rev,2004,132:103-120.
[32]Hong S Y,Noh Y,Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev,2006,134(9):2318-2341.
[33]Mlawer E J,Taubman S J,Brown P D,et al. Radiative transfer for inhomogeneous atmosphere:RRTM,a validated correlated-k model for the long-wave[J]. J Geophys Res,1997,102(D14):16663-16682.
[34]Chou M D,Suarez M J. An efficient thermal infrared radiation parameterization for use in general circulation models[J]. Laboratory for Atmospheres,NASA Tech Memo,1994,85.
[35]Noh Yign,Woo Geun Cheon,Song-You Hon,et al. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data[J]. Bound-Layer Meteor,2003,107(2):401-427.
[36]Chen F,Dudhia J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I:Model description and implementation[J]. Mon Wea Rev,2001,129(4):569-585.
[37]Grell G A,Devenyi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophys Res Lett,2002,29(14):381-384.
[38]张强,王胜. 特强沙尘暴(黑风)的形成及其效应[J]. 中国沙漠,2005,25(5):675-681.
Outlines

/