Net Ecosystem Carbon Dioxide Exchange in Alpine Meadow of Nagchu Region over Qinghai-Xizang Plateau

  • ZHU Zhikun ,
  • HU Zeyong ,
  • MA Yaoming ,
  • LI Maoshan ,
  • SUN Fanglin
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. Key Laboratory of Tibetan Environment Change and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-09-02

  Online published: 2015-10-28

Abstract

Eddy covariance method was used to measure the net ecosystem CO2 exchange (NEE) between an alpine meadow and the atmosphere at Nagchu station on the central of the Qinghai-Xizang Plateau.The results showed that during the growing season,the maximum CO2 uptake and release rate were 5.3 and 1.7 μmolCO2·m-2·s-1,respectively.Daily integrated NEE reached its peak magnitude of -8.5 gCO2·m-2·d-1 in the mid of July.Annual integrated NEE was -151.5 gCO2·m-2 (-41.3 gC·m-2),indicating this ecosystem was a carbon sink.However,the net carbon sequestration potential was weak compared to the grassland on the eastern plateau.During the pear growing period,the apparent quantum yield α was -0.0255±0.0105 μmolCO2·μmol-1 photons,which was similar to reported results of most C3 grassland under appropriate soil water content.Total daily NEE tended to be higher when day/night temperature difference was greater.The rain pulse occurred during the non-growing season stimulated the ecosystem respiration and had an important influence to the ecosystem carbon balance.

Cite this article

ZHU Zhikun , HU Zeyong , MA Yaoming , LI Maoshan , SUN Fanglin . Net Ecosystem Carbon Dioxide Exchange in Alpine Meadow of Nagchu Region over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2015 , 34(5) : 1217 -1223 . DOI: 10.7522/j.issn.1000-0534.2014.00135

References

[1]于贵瑞,王秋凤,高鲁鹏,等.全球变化与陆地生态系统碳循环和水循环[M].陆地生态系统通量观测的原理与方法.北京:高等教育出版社,2006.
[2]IPCC.Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC[R].Cambridge:Cambridge University Press,2007.
[3]Scurlock J,Hall D.The global carbon sink:A grassland perspective[J].Global Change Biology,1998,4(2):229-233.
[4]Schimel D S,House J,Hibbard K,et al.Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J].Nature,2001,414(6860):169-172.
[5]Fan J,Zhong H,Harris W,et al.Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass[J].Climatic Change,2008,86(3-4):375-396.
[6]Kang S,Xu Y,You Q,et al.Review of climate and cryospheric change in the Tibetan Plateau[J].Environ Res Lett, 2010,5(1),doi:10.1088/1748-9326/5/1/015101.
[7]Yang K,Wu H,Qin J,et al.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J].Global and Planetary Change,2014,112:79-91.
[8]中国科学院青藏高原综合科学考察队.西藏草原[M].北京:科学出版社,1992.
[9]石培礼,孙晓敏,徐玲玲,等.西藏高原草原化嵩草草甸生态系统CO<sub>2</sub>净交换及其影响因子[J].中国科学(D辑),2006,36(1):194-203.
[10]徐世晓,赵新全,李英年,等.青藏高原高寒灌丛生长季和非生长季CO<sub>2</sub>通量分析[J].中国科学(D辑),2004,34(2):118-124.
[11]于贵瑞,伏玉玲,孙晓敏,等.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J].中国科学(D辑),2006,36(1):1-21.
[12]于贵瑞,张雷明,孙晓敏,等.亚洲区域陆地生态系统碳通量观测研究进展[J].中国科学(D辑),2004,34(A02): 15-29.
[13]Yu G R,Zhu X J,Fu Y L,et al.Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China[J].Global Change Biology,2013,19(3):798-810.
[14]马耀明,吴晓鸣.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学,2000,24(5):715-722.
[15]李茂善,马耀明,胡泽勇,等.藏北那曲地区大气边界层特征分析[J].高原气象,2004,23(5):728-733.
[16]马伟强,马耀明,胡泽勇,等.藏北高原地面辐射收支的初步分析[J].高原气象,2004,23(3):348-352.
[17]Mauder M,Thomas F.Doucumnet and Instruction Manual of the Eddy-Covariance Software Package TK3[M].University of Bayreuth:Arbeitsergebnisse Mikrometeorologie,2011.
[18]Vickers D,Mahrt L.Quality control and flux sampling problems for tower and aircraft data[J].Journal of Atmospheric and Oceanic Technology,1997,14(3):512-526.
[19]Webb E K,Pearman G I,Leuning R.Correction of flux measurements for density effects due to heat and water vapour transfer[J].Quart J Roy Meteor Soc,1980,106(447):85-100.
[20]Wilczak J M,Oncley S P,Stage S A.Sonic anemometer tilt correction algorithms[J].Bound-Layer Meteor,2001,99(1):127-150.
[21]Rebmann C,G?ckede M,Foken T.Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling[J].Theor Appl Climatol,2005,80(2):121-141.
[22]Foken T,Wichura B.Tools for quality assessment of surface-based flux measurements[J].Agricultural and Forest Meteorology,1996,78(1-2):83-105.
[23]李茂善,杨耀先,马耀明,等.纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J].高原气象,2012,31(4):875-884.
[24]Lloyd J,Taylor J.On the temperature dependence of soil respiration[J].Functional Ecology,1994,8(3):315-323.
[25]Gomez-Casanovas N,Anderson-Teixeira K,Zeri M,et al.Gap filling strategies and error in estimating annual soil respiration[J].Global Change Biology,2013,19(6):1941-1952.
[26]Falge E,Baldocchi D,Olson R,et al.Gap filling strategies for defensible annual sums of net ecosystem exchange[J].Agricultural and Forest Meteorology,2001,107(1):43-69.
[27]Suyker A E,Verma S B.Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie[J].Global Change Biology,2001,7(3):279-289.
[28]Flanagan L B,Wever L A,Carlson P J.Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland[J].Global Change Biology, 2002,8(7):599-615.
[29]Zhang W,Chen S,Chen J,et al.Biophysical regulations of carbon fluxes of a steppe and a cultivated cropland in semiarid Inner Mongolia[J].Agricultural and Forest Meteorology, 2007,146(3):216-229.
[30]Li S G,Asanuma J,Eugster W,et al.Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia[J].Global Change Biology,2005,11(11):1941-1955.
[31]Zhao L,Li Y N,Xu S X,et al.Diurnal,seasonal and annual variation in net ecosystem CO<sub>2</sub> exchange of an alpine shrubland on Qinghai-Tibetan plateau[J].Global Change Biology,2006,12(10):1940-1953.
[32]Kato T,Tang Y,Gu S,et al.Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau[J].J Geophys Res,2004,109(D12),doi:10.1029/2003JD003951.
[33]王海波,马明国,王旭峰,等.青藏高原东缘高寒草甸生态系统碳通量变化特征及其影响因素[J].干旱区资源与环境,2014,28(6):50-56.
[34]徐玲玲,张宪洲,石培礼,等.青藏高原高寒草甸生态系统表观量子产额和表观最大光合速率的确定[J].中国科学(D辑),2004,34(A02):125-130.
[35]Xu L,Baldocchi D D.Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California[J].Agricultural and Forest Meteorology,2004,123(1):79-96.
[36]石培礼,孙晓敏,徐玲玲,等.西藏高原草原化嵩草草甸生态系统CO<sub>2</sub>净交换及其影响因子[J].中国科学(D辑), 2006,36(1):194-203.
[37]Gu S,Tang Y,Du M,et al.Short-term variation of CO<sub>2</sub> flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau[J].J Geophys Res:Atmospheres (1984–2012),2003,108(D21),doi:10.1029/2003JD003584.
[38]Xu L,Baldocchi D D,Tang J.How soil moisture,rain pulses,and growth alter the response of ecosystem respiration to temperature[J].Global Biogeochemical Cycles,2004,18(4),doi:10.1029/2004GB002281.
Outlines

/