Soils containing gravel (particle size ≥2 mm) are widely distributed over the Qinghai-Xizang Plateau (QXP).Soil mixed with gravel has different thermal and hydrological properties compared with fine soil (particle size <2 mm), and thus has marked impacts on soil water and heat transfer.However, the most commonly used land models do not consider the effects of gravel.This paper reports the development of a new scheme that simulates the thermal and hydrological processes in soil containing gravel, and its application in the QXP.The new scheme was implemented in version 4 of the Community Land Model and experiments were conducted at Nagqu (BJ).The results show that the soil hydraulic conductivity increases with the volume content of gravel in different humidity soils; on the other hand, the soil matric potential increases with gravel in dry soils and it decreases with gravel in wet soils.Considering the effects of gravel on soil thermal and hydraulic process, the new scheme performs well in simulating the soil temperature and moisture.By comparing the simulations of the old scheme with new scheme, the average root mean squared error of soil moisture reduced by 32.7%; The average root mean squared error of the soil temperature reduced by 24.6%.
[1]Oleson K W, Lawrence D M, Bonan G B, et al.Technical description of version 4.5 of the Community Land Model (CLM)[R].NCAR Technical Note TN +STR, 2013: 1.
[2]Cosby B J, Hornberger G M, Clapp R B, et al.A statistiacal exploration of the relationships of soil moisture characteristics to the physical properties of soils[J].Water Resources Research, 1984, 20: 682-690.
[3]熊建胜, 张宇, 王少影, 等.CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J].高原气象, 2014, 33(2): 323-336, doi: 10.7522/j.issn.1000-0534.2014.00012.
[4]李凯, 高艳红, Chen Fei, 等.植被根系对青藏高原中部土壤水热过程影响的模拟[J].高原气象, 2015, 34(3): 642-652, doi: 10.7522/j.issn.1000-0534.2015.00035.
[5]王愚, 胡泽勇, 荀学义, 等.藏北高原土壤热传导率参数化方案的优化和检验[J].高原气象, 2013, 32(3): 646-653, doi: 10.7522/j.issn.1000-0534.2013.00063.
[6]陈渤黎, 吕世华, 罗斯琼.CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J].高原气象, 2012, 31(6): 1511-1522.
[7]Luo S, Lü S, Zhang Y.Development and validation of the frozen soil parameterization scheme in Common Land Model[J].Cold Regions Science and Technology, 2009, 55(1): 130-140.
[8]李震坤, 吴炳义, 朱伟军, 等.CLM3.0模式中冻土过程参数化的改进及模拟试验[J].气候与环境研究, 2011, 16(2): 137-148.
[9]Brouwer J, Anderson H.Water holding capacity of ironstone gravel in a typic Plinthoxeralf in southeast Australia[J].Soil Science Society of America Journal, 2000, 64: 1603-1608.
[10]Reinhort K G, Phillips J J.Variations in bulk density and moisture content within two New Jersey coastal plain soils, Lakeland and Lakehurst sands[J].Soil Science Society of America Journal, 1964, 28: 287-289.
[11]张永涛, 杨吉华.石质山地不同条件的土壤入渗特性研究[J].水土保持学报, 2002, 16(4): 123-126.
[12]符素华.土壤中砾石存在对入渗影响研究进展[J].水土保持学报, 2005, 19(1): 171-175.
[13]邵明安, 马东豪, 朱元骏, 等.黄土高原土石混合介质土壤水分研究[M].北京: 科学出版社, 2010: 38-91.
[14]Barkensiek D L, Rawls W J, Stephenson G R.Determining the saturated hydraulic conductivity of a soil containing rock fragments[J].Soil Science Society of America Journal, 1986, 50: 834-835.
[15]Russo D.Leaching characteristics of stony desert soil[J].Soil Science Society of America Journal, 1983, 47: 431-438.
[16]Cote J, Konrad J M.A generalized thermal conductivity model for soils and construction materials[J].Canadian Geotechnical Journal, 2005, 42(2): 433-458.
[17]罗斯琼, 吕世华, 张宇, 等.青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J].地球物理学报, 2009, 52(4): 919-928.
[18]Lawrence D M, Oleson K W, Flanner M G, et al.Parameterization improvements and functional and structural advances in version 4 of the Community Land Model[J].Journal of Advances in Modeling Earth Systems, 2011, 45: 27.
[19]Clapp R B, Hornberger G M.Empirical equations for some soil hydraulic properties[J].Water Resour Res, 1978, 14: 601-604.
[20]Farouki O T.Thermal properties of soils[M].Series on Rock and Soil Mechanics.Germany: Trans Tech Publications, 1986: 136.
[21]陈鸿昭, 高以信, 吴志东.青藏高原的隆起对高山土壤形成的影响[J].土壤学报, 1981, 18(2): 137-147.
[22]Sharma P P, Carter F S, Halvorson G A.Water retention by soil containing coal[J].Soil Science Society of America Journal, 1993, 57: 311-316.
[23]Ravina I, Magier J.Hydraulic conductivity and water retention of clay soils containing coarse fragments[J].Soil Science Society of America Journal, 1984, 48: 736-740.
[24]Peck A J, Watson J D.Hydraulic conductivity and flow in non-uniform soil[C]//Workshop on Soil Physics and Field heterogeneity CSIRO.Division of Environmental Mechanics, Canberra, Australia, 1979: 31-39.
[25]吕国安, 陈明亮, 王春潮.丹江口库区石渣土土壤水分特征研究[J].华中农业大学学报, 2000, 19(4): 342-345.
[26]Cousin I, Nicoullaud B, Coutadeur C.Influence of rock fragment on the water retention and water percolation in a calcareous soil[J].CATENA, 2003, 53: 97-114.
[27]Montagne C, Ruddell J, Ferguson H.Water retention of soft siltstone fragment in austictorriorthent, central Montana[J].Soil Science Society of America Journal, 1992, 56: 555-557.
[28]Vosteen H D, Schellschmidt R.Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock[J].Physics and Chemistry of the Earth, 2003, 28: 499-509.
[29]黄玉, 朱弟成, 赵志丹, 等.西藏北部拉萨地块那曲地区约113Ma安山岩岩石成因与意义[J].岩石学报, 2012, 28(5): 1603-1614.
[30]罗斯琼, 吕世华, 张宇, 等.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 2008, 27(2): 259-271.