MCC Survey and Rainfall Characteristic in East Mountain of Yunnan-Guizhou Plateau

  • YANG Jing ,
  • DU Xiaoling ,
  • QI Dapeng ,
  • LUO Xiping
Expand
  • Guizhou Meteorological Observatory, Guiyang 550002, China;2. Guizhou Key Laboratory of Mountain Climate and Resources, Guiyang 550002, China

Received date: 2013-04-02

  Online published: 2015-10-28

Abstract

Take advantage of average black body temperature data of FY meteorological satellite, altitude and surface weather observations, precipitation data of 85 meteorological stations in Guizhou Province, and hourly precipitation data of township automatic observation station during 2010.Censused of mesoscale convective complexes (MCC) in the eastern mountain of Yunnan-Guizhou Plateau, counted and analyzed its spatial and temporal characteristics, strength characteristics, life history, moving path, its precipitation distribution and intensity characteristics.The results indicate that, MCC in the eastern mountain of Yunnan-Guizhou Plateau in summer used to appear from May to July, formation time is from 19:00 to 03:00 the next day, its life history are generally more than 8 hours, newborn convective clouds which formed MCC generate in 13:00-18:00, its initial source area in western of Guizhou (103°-E105.6°E, 25°-N27.5°N).Vortex in Guizhou western edge is the direct influence system which cause convective cloud occur frequently.Maximum precipitation of MCC is mainly concentrated in the northwest and the northeast quadrant, and the distance to center of MCC is less than 3 latitude or longitude.Mountain short-term heavy precipitation are occurred mainly during the mature stage of MCC, and brightness temperature below -70℃.

Cite this article

YANG Jing , DU Xiaoling , QI Dapeng , LUO Xiping . MCC Survey and Rainfall Characteristic in East Mountain of Yunnan-Guizhou Plateau[J]. Plateau Meteorology, 2015 , 34(5) : 1249 -1260 . DOI: 10.7522/j.issn.1000-0534.2014.00060

References

[1]Augustine J A, Howard K W.Mesoscale convective complexes over the United States during 1985[J].Mon Wea Rev, 1988, 116(3): 685-701.
[2]郑永光, 朱佩君, 陈敏, 等.1993-1996黄海及其周边地区MαCS的普查分析[J].北京大学学报, 2004, 40(1): 66-72.
[3]张庆红, 刘彦, 张玉玲.中尺度对流复合体的诊断分析[J].自然科学进展, 1998, 8(2): 213-219.
[4]肖稳安, 褚昭利, 徐辉.中尺度对流复合体的降水特征和预报[J].南京气象学院学报, 1995, 18(1): 107-113.
[5]肖稳安.长江中游暴雨云团成因分类和暴雨预报[J].南京气象学院学报, 1990, 13(4): 576-581.
[6]项续康, 江吉喜.我国南方地区的中尺度对流复合体[J].应用气象学报, 1995, 6(1): 9-17.
[7]伍星赞, 纪英惠.华南地区MCC云图特征和成因分析[J].气象, 1996, 22(4): 32-36.
[8]Ma Y, Wang X, Tao Z Y.Geographic distribution and life cycle of mesoscale convective system in China and Vicinity[J].Progress Nature Science, 1997, 7(6): 701-706.
[9]许美玲, 尹丽云, 金少华, 等.云南突发性特大暴雨过程成因分析[J].高原气象, 2013, 32(4): 1062-1073.
[10]杜小玲, 彭芳, 吴古会, 等.应用新型辐散方程诊断“6.28”关岭大暴雨的激发和维持机制[J].高原气象, 2013, 32(3): 728-738, doi:10.7522/j.issn.1000-0534.2012.00068.
[11]池再香, 杜正静, 赵群剑, 等.中尺度西南涡、切变线对“07·7”贵州西部暴雨影响的分析与模拟[J].高原气象, 2010, 29(4): 929-938.
[12]黎惠金, 李向红, 黄芳, 等.广西一次特大暴雨的MCC演变过程及结构特征分析[J].高原气象, 2013, 32(3): 806-817, doi: 10.7522/j.issn.1000-0534.2012.00074.
[13]杜小玲, 杨静, 彭芳, 等.贵州望谟初夏暴雨环境场和物理量场合成分析[J].高原气象, 2013, 32(5): 1400-1413, doi: 10.7522/j.issn.1000-0534.2012.00131.
[14]井喜, 陈见, 胡春娟, 等.广西和贵州MCC暴雨过程综合分析[J].高原气象, 2009, 28(2): 335-351, doi: 10.7522/j.issn.1000-0534.2012.00141.
[15]李登文, 杨静, 乔琪.2006-06-13贵州省望谟县大暴雨的诊断分析[J].南京气象学院学报, 2008, 31(4): 511-519.
[16]乔林, 陈涛, 路秀娟.黔西南一次中尺度暴雨的数值模拟诊断研究[J].大气科学, 2009, 33(3): 537-550.
[17]Augustine J A, Howard K W.Mesoscale convective complexes over the United States during 1986 and 1987[J].Mon Wea Rev, 1991, 119(7): 1575-1589.
[18]Anderson C J, Arritt R W.Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993[J].Mon Wea Rev, 1998, 126(3): 578-599.
[19]中国气象局.全国短时、临近预报业务规定(气科函〔2010〕21号)[Z].2010 : 1.
[20]钟晓平, 杨淑群, 朱远琼.青藏高原东部地区中尺度对流复合体的降水特征[J].高原气象, 1994, 13(2): 113-121.
[21]刘玉芝, 邹树峰, 王广春.“93· 8”中尺度对流复合体的云图分析[J].气象, 1996, 22(12): 20-23.
[22]姬菊枝, 王开宇, 方丽娟, 等.东北地区中北部的一次区域暴雨天气—中尺度对流复合体特征分析[J].自然灾害学报, 2009, 18(2): 101-106.
Outlines

/