Study of Model Error Correction on Summer Temperature in China Based on the Method of Combine with Dynamic and Statistical

  • SU Haijing ,
  • FENG Guolin ,
  • YANG Jie ,
  • WANG Qiguang
Expand
  • College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China;2. Laboratory for Climate Studies of National Climate Center, Beijing 100081, China;3. Climate Center of Jiangsu Provincial Meteorological Bureau, Nanjing 210000, China;4. China Meteorological Administration Training Center, Beijing 100081, China

Received date: 2013-11-28

  Online published: 2015-10-28

Abstract

By using climate trend coefficient analysis the variation of observed and model predicted China summer temperature in the past 30 years.The dates come from NCEP/NCAR daily reanalysis date and National Climatic Center monthly models temperature date.Through empirical mode decomposition method fitting the raise trend of observed temperature and remove the trend in the context of global warming.Combined with systematic error correction and seasonal prediction method-statistical method of combining power to analysis the trend on the impact of summer temperatures forecast.The results show that: most of the area in China has a significant increase trend in summer temperature in last 30 years.In most areas the climate trend coefficient get through 0.01 significance level.But mode temperature almost have no change in trend in last 30 years, there is obviously inadequate for global warming.In order to avoid this kind of model simulation of observed temperature the overall trend is insufficient to predict effect and the effect of the optimal predicted results.Using the empirical mode decomposition method can effectively fitting and remove the trend of observed temperature.When forecasting the temperature we remove the trend first and add the trend in the last.Trough tests find that the method can significantly improve the result compare with direct forecast result in most area.And solve the problem of forecast result is lower than observed result.All the results show that it is necessary to remove the observed temperature increase trend in numerical prediction model results in post-processing.

Cite this article

SU Haijing , FENG Guolin , YANG Jie , WANG Qiguang . Study of Model Error Correction on Summer Temperature in China Based on the Method of Combine with Dynamic and Statistical[J]. Plateau Meteorology, 2015 , 34(5) : 1345 -1356 . DOI: 10.7522/j.issn.1000-0534.2014.00069

References

[1]钱忠华, 封国林, 龚志强.中国夏冬两季最概然温度分布及其增温趋势减缓[J].物理学报, 2010, 59(10): 7498-7507.
[2]周雅清, 任国玉.城市化对华北地区极端气温事件频率的影响[J].高原气象, 2014, 33(6): 1589-1598, doi: 10.7522/j.issn.1000-0534.2013.00153.
[3]张世轩, 张璐, 孙树鹏, 等.全球变暖情况下中国季节的变化[J].高原气象, 2011, 30 (3): 659-667.
[4]贾宏元, 程彦杰, 周翠芳.近52年宁夏冬季极端寒冷事件的演变特征[J].高原气象, 2015, 34(2): 455-462, doi: 10.7522/j.issn.1000-0534.2013.00200.
[5]任宏利, 丑纪范.动力相似预报的策略和方法研究[J].中国科学(D辑), 2007, 37(8): 1101-1109.
[6]任宏利, 丑纪范.数值模式的预报策略和方法研究进展[J].地球科学进展, 2007, 22(4): 376-385.
[7]封国林, 董文杰.集合预报物理基础的探讨[J].物理学报, 2003, 52(9): 2347-2353.
[8]戴永久, 曾庆存, 王斌.一个简单的陆面过程模式[J].大气科学, 1997, 21(6): 705-716.
[9]高学杰, 徐影, 赵宗慈, 等.数值模式不同分辨率和地形对东亚降水模拟影响的试验[J].大气科学, 2006, 30(2): 185-192.
[10]郎咸梅, 王会军, 姜大膀.中国冬季气候可预测性的跨季度集合数值预测研究[J].科学通报, 2003, 48(15): 1700-1704.
[11]王会军, 张颖, 郎咸梅.论短期气候预测的对象问题[J].气候与环境研究, 2010, 15(3): 225-228.
[12]王会军.试论短期气候预测的不确定性.气候与环境研究[J].1997, 2(4): 333-338.
[13]曾庆存, 周广庆, 浦一芬.地球系统动力学模式及模拟研究[J].大气科学, 2008, 32(4): 653-690.
[14]赵彦, 李旭, 袁重光.IAP短期气候距平预测系统的定量评估及订正技术的改进研究[J].气候与环境研究, 1994, 4(4): 353-364.
[15]竺可桢.东南季风与中国之雨量[J].地理科学, 1934, 1: 1.
[16]范可, 王会军, Choi Young-Jean.一个长江中下游夏季降水的物理统计预测模型[J].科学通报, 2007, 52(24): 2900-2905.
[17]沙万英.西太平洋副热带高压脊线变化与我国汛期降水的关系[J].应用气象学报, 1998, 9(增刊1): 31-38.
[18]刘宗秀, 廉毅, 沈柏竹, 等.北太平洋涛动区500 hPa高度场季节变化特征及其对中国东北区降水的影响[J].应用气象学报, 2003, 14(5): 553-561.
[19]邱崇践, 丑纪范.天气预报的相似-动力方法[J].大气科学, 1989, 13(1): 20-28.
[20]Cao H X.Self-memorization equation in atmospheric motion[J].Science in China (Serious B), 1993, 36(7): 845-855.
[21]齐庆华, 蔡榕硕, 张启龙.华南夏季极端降水时空变异及其与西北部太平洋海气异常关联性初探[J].高原气象, 2013, 32(1): 110-121, doi: 10.7522/j.issn.1000-0534.2013.00012.
[22]封国林, 曹鸿兴, 魏风英, 等.长江三角洲汛期预报模式的研究及其初步应用[J].气象学报, 2001, 59(2): 206-212.
[23]范可, 林美静, 高煜中.用年际增量方法预测华北汛期降水[J].中国科学(D辑), 2008, 38(11): 1452-1459.
[24]苏海晶, 王启光, 杨杰, 等.基于奇异值分解对中国夏季降水模式误差订正的研究[J].物理学报, 2013, 62(10): 109-202.
[25]杨杰, 王启光, 支蓉, 等.动态最优多因子组合的华北汛期降水模式误差估计及预报[J].物理学报, 2011, 60(2): 827-839.
[26]顾震潮.作为初值问题的天气形势数值预报与由地面天气历史演变作预报的等值性[J].气象学报, 1958, 29(2): 93-98.
[27]丑纪范.为什么要动力—统计相结合?——兼论如何结合[J].高原气象, 1986, 5(4): 367-372.
[28]谷湘潜.一个基于大气自忆原理的谱模式[J].科学通报, 1998, 43(9): 909-917.
[29]黄建平, 王绍武.相似—动力模式的季节预报试验[J].中国科学(B辑), 1991, 2: 216-224.
[30]熊开国, 赵俊虎, 封国林, 等.汛期降水相似动力预报——模式误差主分量相似预报方法[J].物理学报, 2012, 61(14): 149204.
[31]任宏利, 张培群, 李维京, 等.基于多个参考态更新的动力相似预报方法及应用[J].物理学报, 2006, 55(8): 4388-4396.
[32]丁一汇, 李清泉, 李维京, 等.中国业务动力季节预报的进展[J].气象学报, 2004, 62(5): 598-612.
[33]董敏主编.国家气候中心大气环流棋式—基本原理和使用说明[M].北京: 气象出版社, 2001: 1-152.
[34]Jin X Z, Zhang X H, Zhou T J.Fundamental framework and experiments of the thirdGeneration of IAP/LASG world ocean general circulation model[J].Adv Atmos Sci, 1999.16(2): 197-215.
[35]施能, 陈家其, 屠其璞.中国近10年来4个年代际的气候变化特征[J].气象学报, 1995, 53(4): 431-439.
[36]龚志强, 邹明玮, 高新全, 等.基于非线性时间序列分析经验模态分解和小波分解异同性的研究[J].物理学报, 2005, 54(8): 3947-3957.
Outlines

/