Characteristics of the Three-Dimensional Circulation and Dynamic Structure of Jiulong Vortex of Southwest China Vortex

  • QU Ding ,
  • LI Yueqing
Expand
  • College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, Sichuan, China;Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, Sichuan, China

Received date: 2020-10-14

  Revised date: 2021-03-02

  Online published: 2021-12-28

Abstract

Affected by multi-scale processes, the structure of Jiulong Vortex (JLV) of Southwest China vortex is complex and changeable.In order to study the climatic characteristics of the three-dimensional structure of JLV, using ERA-interim reanalysis data, and on the basis of subdividing JLV’s generating area into subregion 1 and subregion 2, the characteristics of three-dimensional circulation and dynamic structure were deeply studied for the four types of JLV (the unmoved: local type and the moved: eastward type, northeastward type, and southward type) during the summers of 1989 -2018 by observation statistics, synthetic analysis and physical diagnosis.The results show that: (1) There are totally 249 cases of JLV for the past 30 summers.The local type, the eastward type, the northeastward type and the southward type account for 75.5%, 13.7%, 7.2%, 3.6%, respectively.And the four types of JLV all have different regional high-frequency generating centers.JLV moves mainly along the direction of 500 hPa dominant wind above the generating area and nearby.The total number of JLV and the numbers of different four types in subregion 1 are significantly more than that in subregion 2, and JLV in subregion 1 is easier to move out to the northeast and south than it in subregion 2.But, the probabilities of the eastward type are almost equal in subregion 1 and subregion 2.(2) The horizontal scale of JLV is 300~500 km in subregion 1, and 200~400 km in subregion 2.The temperature above JLV is abnormal distribution of "warm below and cold above", the warm layer is deep and can reach more than 200 hPa, the negative abnormal area of height at lower layer is shallow and can only reach 500 hPa.The positive vorticity extends deeply and can reach more than 500 hPa, and it expands eastward at lower layer.The positive abnormal area of height above JLV in subregion 1 slopes vertically to the north obviously, but the positive temperature anomaly of JLV in subregion 2 slopes vertically to the south, and its intensity and range are greater than that in subregion 1.The positive vorticity extension thickness of moved type is deeper than that of unmoved type.(3) The strong convection area of JLV is asymmetrically distributed, mostly in the east and the north along its center.The local type and eastward type have weaker convection development in subregion 1, but they have stronger convection development in subregion 2.And the convergent-divergent structure of JLV corresponds to its convection, the more vigorous the convection is, the stronger the low-level convergence and high-level divergence are.(4) There are obvious differences in the structure and evolution of JLV for the different regions and paths, which depend on the different physical characteristics of different local topography, movement modes, and development stages, and they are the results of the multi-scale interaction of topography and circulation under the different-latitude atmospheric coupling effect between the westerly belt to the north of the Qinghai-Xizang Plateau, the subtropical belt to the east of it, and the tropical belt to the south of it.

Cite this article

QU Ding , LI Yueqing . Characteristics of the Three-Dimensional Circulation and Dynamic Structure of Jiulong Vortex of Southwest China Vortex[J]. Plateau Meteorology, 2021 , 40(6) : 1497 -1512 . DOI: 10.7522/j.issn.1000-0534.2021.zk002

References

[1]FuS M, ZhangJ P, SunJ H, alet, 2014.A fourteen-year climatology of the southwest vortex in summer[J].Atmospheric and Oceanic Science Letters, 7(6): 510-514.DOI: 10.3878/AOSL20140047.
[2]HodgesK I, LeeR W, BengtssonL, 2011.A comparison of extratropical cyclones in recent reanalysis ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25[J].Journal of Climate, 24(18): 4888-4906.DOI: 10.1175/2011JCLI4097.1.
[3]LiL, ZhangR H, WenM, alet, 2014.Effect of the atmospheric heat source on the development and eastward movement of the Tibetan Plateau vortices[J].Tellus A: Dynamic Meteorology and Oceanography, 66(1), 24451.DOI: 10.3402/tellusa.v66.24451.
[4]WangW, KuoY H, WarnerT T, 1993.Adiabatically driven mesoscale vortex in the Lee of the Tibetan Plateau[J].Monthly Weather Review, 121(9): 2542-2561.DOI: 10.1175/1520-0493(1993)121<2542: addmvi>2.0.co; 2.
[5]包澄澜, 李生辰, 1985.西南涡成因初探[J].气象, 11(1): 2-6.DOI: 10.7519/j.issn.1000-0526.1985.01.001.
[6]陈启智, 黄奕武, 王其伟, 等, 2007.1990-2004年西南低涡活动的统计研究[J].南京大学学报(自然科学版), 43(6): 633-642.DOI: 10.3321/j.issn: 0469-5097.2007.06.008.
[7]陈涛, 张芳华, 端义宏, 2011.广西“6·12”特大暴雨中西南涡与中尺度对流系统发展的相互关系研究[J].气象学报, 69(3): 472-485.DOI: 10.11676/qxxb2011.041.
[8]陈忠明, 1998.一次强烈发展西南低涡的中尺度结构分析[J].应用气象学报, 9(3): 273-282.
[9]陈忠明, 闵文彬, 崔春光, 2004.西南低涡研究的一些新进展[J].高原气象, 23(增刊): 1-5.
[10]丁治英, 吕君宁, 1991.西南低涡动态的合成诊断[J].高原气象, 10(2): 156-165.
[11]范娇, 陈科艺, 2019.有无台风影响下西南涡特征统计分析[J].高原气象, 38(4): 744-755.DOI: 10.7522/j.issn.1000-0534. 2018.00108.
[12]傅慎明, 赵思雄, 孙建华, 等, 2010.一类低涡切变型华南前汛期致洪暴雨的分析研究[J].大气科学, 34(2): 235-252.DOI: 10. 3878/j.issn.1006-9895.2010.02.01.
[13]何光碧, 曾波, 郁淑华, 等, 2016.青藏高原周边地区持续性暴雨特征分析[J].高原气象, 35(4): 865-874.DOI: 10.7522/j.issn. 1000-0534.2015.00081.
[14]黄福均, 1986.西南低涡的合成分析[J].大气科学, 10(4): 402-408.DOI: 10.3878/j.issn.1006-9895.1986.04.07.
[15]矫梅燕, 李川, 李延香, 2005.一次川东大暴雨过程的中尺度分析[J].应用气象学报, 16(5): 699-704.
[16]康岚, 郝丽萍, 牛俊丽, 2011.引发暴雨的西南低涡特征分析[J].高原气象, 30(6): 1435-1443.
[17]李超, 李跃清, 蒋兴文, 2015.四川盆地低涡的月际变化及其日降水分布统计特征[J].大气科学, 39(6): 1191-1203.DOI: 10. 3878/j.issn.1006-9895.1502.14270.
[18]李超, 李跃清, 蒋兴文, 2017.夏季长生命史盆地低涡活动对川渝地区季节降水的影响[J].高原气象, 36(3): 685-696.DOI: 10.7522/j.issn.1000-0534.2016.00064.
[19]李强, 王秀明, 周国兵, 等, 2020.四川盆地西南低涡暴雨过程的短时强降水时空分布特征研究[J].高原气象, 39(5): 960-972.DOI: 10.7522/j.issn.1000-0534.2019.00096.
[20]李跃清, 闵文彬, 彭俊, 等, 2015.西南低涡年鉴(2013)[M].北京: 科学出版社, 1-262.
[21]李跃清, 徐祥德, 2016a.西南涡研究和观测试验回顾及进展[J].气象科技进展, 6(3): 134-140.DOI: 10.3969/j.issn.2095-1973.2016.03.018.
[22]李跃清, 闵文彬, 彭俊, 等, 2016b.西南低涡年鉴(2014)[M].北京: 科学出版社, 1-183.
[23]李跃清, 闵文彬, 彭俊, 等, 2017a.西南低涡年鉴(2015)[M].北京: 科学出版社, 1-230.
[24]李跃清, 闵文彬, 彭俊, 等, 2017b.西南低涡年鉴(2016)[M].北京: 科学出版社, 1-219.
[25]李跃清, 闵文彬, 彭俊, 等, 2019.西南低涡年鉴(2017)[M].北京: 科学出版社, 1-228.
[26]李跃清, 闵文彬, 彭骏, 等, 2020.西南低涡年鉴(2018)[M].北京: 科学出版社, 1-184.
[27]李跃清, 郁淑华, 彭俊, 等, 2013.西南低涡年鉴(2012)[M].北京: 科学出版社, 1-352.
[28]李跃清, 赵兴炳, 邓波, 2010.2010年夏季西南涡加密观测科学试验[J].高原山地气象研究, 30(4): 80-84.DOI: 10.3969/j.issn.1674-2184.2010.04.014
[29]李跃清, 赵兴炳, 张利红, 等, 2011.2011年夏季西南涡加密观测科学试验[J].高原山地气象研究, 31(4): 7-11.DOI: 10.3969/j.issn.1674-2184.2011.04.002.
[30]李跃清, 赵兴炳, 张利红, 等, 2012.2012年夏季西南涡加密观测科学试验[J].高原山地气象研究, 32(4): 1-8.DOI: 10.3969/j.issn.1674-2184.2012.04.001.
[31]刘建勇, 谈哲敏, 顾思南, 2011.梅雨期暴雨系统的流依赖中尺度可预报性[J].大气科学, 35(5): 912-926.DOI: 10.3878/j.issn.1006-9895.2011.05.11.
[32]刘建勇, 谈哲敏, 张熠, 2012.梅雨期3类不同形成机制的暴雨[J].气象学报, 70(3): 452-466.DOI: 10.11676/qxxb2012.038.
[33]刘金卿, 李子良, 2020.一次西南涡诱生气旋引发的湖南大暴雨个例分析[J].高原气象, 39(2): 311-320.DOI: 10.7522/j.issn. 1000-0534.2019.00028.
[34]卢敬华, 1986.西南低涡概论[M].北京: 气象出版社, 1-276.
[35]骆红, 郁淑华, 1991.川东北涡的合成分析[J].高原气象, 10(2): 187-193.
[36]慕丹, 李跃清, 2018.基于ERA-interim再分析资料的近30年九龙低涡气候特征[J].气象学报, 76(1): 15-31.DOI: 10.11676/qxxb2017.084.
[37]潘旸, 李建, 宇如聪, 2011.东移西南低涡空间结构的气候学特征[J].气候与环境研究, 16(1): 60-70.DOI: 10.3878/j.issn. 1006-9585.2011.01.06.
[38]王赛西, 1992.西南低涡形成的气候特征与角动量输送的关系[J].高原气象, 11(2): 144-151.
[39]王晓芳, 廖移山, 闵爱荣, 等, 2007.影响“05·06·25”长江流域暴雨的西南低涡特征[J].高原气象, 26(1): 197-205.
[40]王作述, 汪迎辉, 梁益国, 1996.一次西南低涡暴雨的数值试验研究[C]//85-906-09课题组编著.暴雨科学、 业务试验和天气动力学理论的研究.北京: 气象出版社, 257-267.
[41]徐裕华, 1991.西南气候[M].北京: 气象出版社, 56-60.
[42]于波, 林永辉, 2008.引发川东暴雨的西南低涡演变特征个例分析[J].大气科学, 32(1): 141-154.DOI: 10.3878/j.issn.1006-9895.2008.01.13.
[43]赵平, 李跃清, 郭学良, 等, 2018.青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J].气象学报, 76(6): 833-860.DOI: 10.11676/qxxb2018.060.
[44]朱禾, 邓北胜, 吴洪, 2002.湿位涡守恒条件下西南涡的发展[J].气象学报, 60(3): 343-351.DOI: 10.11676/qxxb2002.041.
Outlines

/