New Related Progress on Researches of the Vortex Source of Southwest China Vortex

  • LI Yueqing
Expand
  • Institute of Plateau Meteorology, China Meteorological Administration (CMA), Chengdu, Chengdu 610072, Sichuan, China;Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, Sichuan, China

Received date: 2020-11-19

  Revised date: 2021-05-20

  Online published: 2021-12-28

Abstract

Southwest China Vortex (SWCV) and its weather influences are one of the main directions in Plateau Meteorology, and the vortex source of SWCV is a basic scientific problem.Because the interaction between topography and circulation is the important formation mechanism for the vortex source of SWCV, it always has been the focus of attention in SWCV researches.The new related progresses in researches of the vortex source of SWCV system are reviewed in this paper for the last 10 years.In particular, it is recognized that because of the multi-scale effects between the topography and circulation, the vortex source of SWCV has the multi-scale characteristic of its distribution, and there are obviously differences between the structure、 evolution、 cause and influence of SWCV with the different vortex sources.The vortex sources of SWCV have closely connection each other.The upper-reach vortex sources such as Jiulong、 Xiaojin have an important effect on the lower-reach vortex sources such as the Basin.The “effect of upper-reach vortex source” of SWCV, atmospheric gravity wave connecting with the complex topography, internal atmospheric process induced by precipitation, and the anomalous influences of East Asia monsoon are also the formation mechanisms for the vortex source of SWCV.External atmospheric forcing and internal atmospheric process all play an important role for the formation of the vortex source of SWCV.But, for research on the vortex source of SWCV, there are some problems such as being weaker in fine observation and basic data, being unknown for the multi-scale structures of the vortex source and its evolution, being not deep to understand the formation cause of different vortex sources and being incomplete in study of the SWCV evolutions and its effects of different vortex sources.And finally, it is pointed out that high resolution observation-experiment, internal structure and abnormal characteristics, evolution process and formation mechanism, and the effects of regional response to climate change on vortex sources are the future research focuses for the problem of the vortex source of SWCV, which is of important significance for the forecast theory and key technology of SWCV system and its effects.

Cite this article

LI Yueqing . New Related Progress on Researches of the Vortex Source of Southwest China Vortex[J]. Plateau Meteorology, 2021 , 40(6) : 1394 -1406 . DOI: 10.7522/j.issn.1000-0534.2021.zk005

References

[1]ChenY R, LiY Q, ZhaoT L, 2015.Cause analysis on eastward movement of Southwest China Vortex and its induced heavy rainfall in South China [J].Advances in Meteorology, Vol.2015, Article ID 481735, 22 pages.DOI: 10.1155/2015/481735.
[2]ChenY R, LiY Q, QiD M, 2019.Analysis of the convective characteristics during the mutual evolution of an inverted trough/low vortex and its induced rainstorm over the northeastern Sichuan basin, China[J].Meteorology and Atmospheric Physics, 131(4): 807-825.DOI: 10.1007/s00703-018-0607-4.
[3]ChengX L, LiY Q, XuL, 2016.An analysis of an extreme rainstorm caused by the interaction of the Tibetan Plateau vortex and the Southwest China vortex from an intensive observation[J].Meteorology and Atmospheric Physics, 128(3): 373-399.DOI: 10.1007/s00703-015-0420-2.
[4]FengX Y, LiuC H, FanG Z, alet, 2016.Climatology and structures of Southwest Vortices in the NCEP Climate Forecast System Reanalysis[J].Journal of Climate, 29(21): 7675-7701.DOI: 10.1175/JCLI-D-15-0813.1.
[5]FuS M, LiW L, SunJ H, alet, 2015.Universal evolution mechanisms and energy conversion characteristics of long-lived mesoscale vortices over the Sichuan Basin[J].Atmospheric Science Letters, 16(2): 127-134.DOI: 10.1002/asl2.533.
[6]FuS M, MaiZ, SunJ H, alet, 2019.Impacts of convective activity over the Tibetan Plateau on Plateau Vortex, Southwest Vortex, and downstream precipitation[J].Journal of the Atmospheric Sciences, 76(12): 3803-3830.DOI: 10.1175/JAS-D-18-0331.1.
[7]WangQ W, TanZ M, 2014.Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation[J].Journal of Geophysical Research Atmospheres, 119(20): 11543-11561.DOI: 10.1002/2014JD021898.
[8]ZhangY C, FuS M, SunJ H, alet, 2019.A 14-year statistics-based semi-idealized modeling study on the formation of a type of heavy rain-producing southwest vortex[J].Atmospheric Science Letters, 20(5): e894.DOI: 10.1002/asl.894.
[9]ZhouK, LiuH W, ZhaoL, alet, 2017.Binary mesovortex structure associated with southwest vortex[J].Atmospheric Science Letters, 18(6): 246-252. DOI: 10.1002/asl.749.
[10]ZhongR, ZhongL H, HuaL J, alet, 2014.A climatology of the Southwest Vortex during 1979-2008[J].Atmospheric and Oceanic Science Letters, 7(6): 577-583.DOI: 10.3878/AOSL20140042.
[11]成都中心气象台, 云南大学物理系气象专业, 1975.西南低涡的形成及其涡源问题[J].气象, 11(4): 11-13.DOI: 10.7519/j.issn.1000-0526.1975.4.007.
[12]陈启智, 黄奕武, 王其伟, 等, 2007.1990-2004年西南低涡活动的统计研究[J].南京大学学报, 43(6): 633-642.DOI: 10.3321/j.issn.0469-5097.2007.06.008.
[13]陈炜, 李跃清, 2019.青藏高原东部重力波过程与西南涡活动的统计关系[J].大气科学, 43(4): 773-782.DOI: 10.3878/j.issn. 1006-9895.1810.18130.
[14]陈忠明, 闵文彬, 2000.西南低涡的统计研究[C]//陶诗言, 陈联寿, 徐祥德, 等主编.第二次青藏高原大气科学试验理论研究进展(二)[M].北京: 气象出版社, 368-378.
[15]陈忠明, 闵文彬, 缪强, 等, 2004a.高原涡与西南低涡耦合作用的个例诊断[J].高原气象, 23(1): 75-80.
[16]陈忠明, 闵文彬, 崔春光, 2004b.西南低涡研究的一些新进展[J].高原气象, 23(增刊): 1-5.
[17]邓承之, 赵宇, 孔凡铀, 等, 2021.“6·30”川渝特大暴雨过程中西南低涡发展机制模拟分析[J].高原气象, 40(1): 85-97.DOI: 10.7522/j.issn.1000-0534.2019.00106.
[18]傅慎明, 孙建华, 赵思雄, 等, 2011.梅雨期青藏高原东移对流系统影响江淮流域降水的研究[J].气象学报, 69(4): 581-600.DOI: 10.11676/qxxb2011.051.
[19]高笃鸣, 李跃清, 程晓龙, 2018.基于西南涡加密探空资料同化的一次奇异路径耦合低涡大暴雨数值模拟研究[J].气象学报, 76(3): 343-360.DOI: 10.11676/qxxb2018.008.
[20]高守亭, 1987.流场配置及地形对西南低涡形成的动力作用[J].大气科学, 11(3): 263-271.DOI: 10.3878/j.issn.1006-9895. 1987.03.05.
[21]高守亭, 陈辉, 2000.大地形背风坡的转槽实验研究[J].气象学报, 58(6): 653-665.DOI: 10.11676/qxxb2000.067.
[22]高文良, 郁淑华, 2018.高原涡诱发西南涡伴行个例的环境场与成因分析[J].高原气象, 37(1): 54-67.DOI: 10.7522/j.issn.1000-0534.2017.00020.
[23]何光碧, 2012.西南低涡研究综述[J].气象, 38(2): 155-163.DOI: 10.7519/j.issn.1000-0526.2012.2.003.
[24]何光碧, 陈静, 李川, 等, 2005.低涡与急流对“涡与急流对川东暴雨影响的分析与数值模拟[J].高原气象, 24(6): 1012-1023.
[25]黄荣辉, 顾雷, 陈际龙, 等, 2008.东亚季风系统的时空变化及其对我国气候异常影响的最近研究进展[J].大气科学, 32(4): 691-719.DOI: 10.3878/j.issn.1006-9895.2008.04.02.
[26]李超, 李跃清, 蒋兴文, 2015.四川盆地低涡的月际变化及其日降水分布统计特征[J].大气科学, 39(6): 1191-1203.DOI: 10.3878/j.issn.1006-9895.1502.14270.
[27]李超, 李跃清, 蒋兴文, 2017.夏季长生命史盆地低涡活动对川渝地区季节降水的影响[J].高原气象, 36(3): 685-696.DOI: 10.7522/j.issn.1000-0534.2016.00064.
[28]李国平, 万军, 卢敬华, 1991.暖性西南低涡形成的一种机制[J].应用气象学报, 2(1): 91-99.
[29]李国平, 2002.青藏高原动力气象学[M].北京: 气象出版社, 23-26.
[30]李强, 王秀明, 周国兵, 等, 2020.四川盆地西南低涡暴雨过程的短时强降水时空分布特征研究[J].高原气象, 39(5): 960-972.DOI: 10.7522/j.issn.1000-0534.2019.00096.
[31]李雪松, 罗亚丽, 管兆勇, 2014.2010年6月中国南方持续性强降水过程: 天气系统演变和青藏高原热力作用的影响[J].气象学报, 72(3): 428-446.DOI: 10.11676/qxxb2014.035.
[32]李小兰, 陈军, 滕林, 等, 2018.贵州高原北侧锢囚锋上一次低涡形成过程[J].干旱气象, 36(1): 44-49.DOI: 10.11755/j.issn.1006-7639(2018)-01-0044.
[33]李跃清, 2011.第三次青藏高原大气科学试验的观测基础[J].高原山地气象研究, 31(3): 77-82.DOI: 10.3969/j.issn.1674-2184·2011.03.016.
[34]李跃清, 赵兴炳, 邓波, 2010.2010年夏季西南涡加密观测科学实验[J].高原山地气象研究, 30(4): 80-84.DOI: 10.3969/j.issn.1674-2184·2010.04.014.
[35]李跃清, 赵兴炳, 张利红, 等, 2011.2011年夏季西南涡加密观测科学实验[J].高原山地气象研究, 31(4): 7-11.DOI: 10.3969/j.issn.1674-2184i.org/10.387.
[36]李跃清, 赵兴炳, 张利红, 等, 2012a.2012年夏季西南涡加密观测科学实验[J].高原山地气象研究, 32(4): 1-8.DOI: 10.3969/j.issn.1674-2184·2012.04.001.
[37]李跃清, 徐祥德, 2016.西南涡研究和观测试验回顾及进展[J].气象科技进展, (3): 134-140.DOI: 10.3969/j.issn.2095-1973. 2016.03.018.
[38]李跃清, 徐祥德, 赵兴炳, 2012b.西南涡大气科学试验的观测布局理论与实践[J].中国工程科学, 14(9): 35-45.DOI: 10.3969/j.issn.1009-1742.2012.09.005.
[39]李跃清, 郁淑华, 彭俊, 等, 2013.西南低涡年鉴(2012)[M].北京: 科学出版社, 1-352.
[40]李跃清, 闵文彬, 彭俊, 等, 2015.西南低涡年鉴(2013)[M].北京: 科学出版社, 1-262.
[41]李跃清, 闵文彬, 彭俊, 等, 2016.西南低涡年鉴(2014)[M].北京: 科学出版社, 1-183.
[42]李跃清, 闵文彬, 彭俊, 等, 2017a.西南低涡年鉴(2015)[M].北京: 科学出版社, 1-230.
[43]李跃清, 闵文彬, 彭俊, 等, 2017b.西南低涡年鉴(2016)[M].北京: 科学出版社, 1-219.
[44]李跃清, 闵文彬, 彭俊, 等, 2019.西南低涡年鉴(2017)[M].北京: 科学出版社, 1-228.
[45]李跃清, 闵文彬, 彭骏, 等, 2020.西南低涡年鉴(2018)[M].北京: 科学出版社, 1-184.
[46]刘富明, 杜文杰, 1987.触发四川盆地暴雨的高原涡的形成和东移[C]∥青藏高原气象科研拉萨会战组主编.夏半年青藏高原对我国天气的影响[M].北京: 科学出版社, 123-134.
[47]刘红武, 李国平, 2008.近三十年西南低涡研究的回顾与展望[J].高原山地气象研究, 28(2): 68-73.
[48]卢敬华, 1986.西南低涡概论[M].北京: 气象出版社, 57-63.
[49]卢萍, 李旭, 李英, 等, 2016.空间加密探空观测资料对西南低涡暴雨天气过程数值模拟的影响[J].大气科学, 40(4): 730-742.DOI: 10.3878/j.issn.1006-9895.1511.15170.
[50]卢萍, 李跃清, 郑伟鹏, 等, 2014.影响华南持续性强降水的西南涡分析和数值模拟[J].高原气象, 33(6): 11457-1467.DOI: 10.7522/j.issn.1000-0534.2013.00137.
[51]卢萍, 李跃清.2020.9年夏季连续加密探空观测的九龙站边界层特征分析[J].高原气象, 39(5): 1058-1069.DOI: 10.7522/j.issn.1000-0534.2019.00098.
[52]慕丹, 李跃清, 2017.西南涡统计特征研究综述[J].干旱气象, 35(2): 175-181.DOI: 10.11755/j.issn.1006-7639(2017)-02-0175.
[53]慕丹, 李跃清, 2018.基于ERA-interim再分析资料的近30年九龙低涡气候特征[J].气象学报, 76(1): 15-31.DOI: 10.11676/qxxb2017.084.
[54]潘旸, 李建, 宇如聪, 2011.东移西南低涡空间结构的气候学特征[J].气候与环境研究, 16(1): 60-70.DOI: 10.3878/j.issn. 1006-9585.2011.01.06.
[55]谌贵珣, 何光碧, 2008.2000-2007年西南低涡活动的统计分析[J].高原山地气象研究, 28(4): 59-65.
[56]陶诗言, 1980.中国之暴雨[M].北京: 科学出版社, 133-199.
[57]08课题组编著.暴雨科学、 业务试验和天气动力学理论的研究[M].北京: 气象出版社, 257-267.
[58]王革丽, 陈万隆, 1997.植被和土壤湿度对西南低涡降水影响的敏感性试验[J].高原气象, 16(3): 243-249.
[59]王其伟, 2006.影响我国长江中下游地区天气的地形扰动的若干问题研究[D].南京: 南京大学, 1-104.
[60]王赛西, 1992.西南低涡形成的气候特征与角动量输送的关系[J].高原气象, 11(2): 144-151.
[61]王毅, 何立富, 代刊, 等, 2017.集合敏感性方法在高原涡和西南涡引发暴雨过程中的应用[J].高原气象, 36(5): 1245-1256.DOI: 10.7522/j.issn.1000-0534.2016.00102.
[62]吴国雄, 刘还珠, 1999.全型垂直涡度倾向方程和倾斜涡度发展[J].气象学报, 57(1): 1-4.
[63]肖玉华, 郁淑华, 高文良, 等, 2018.一例伴随西南涡的入海高原涡持续活动成因分析[J].高原气象, 37(6): 1616-1627.DOI: 10.7522/j.issn.1000-0534.2018.00043.
[64]徐裕华, 1991.西南气候[M].北京: 气象出版社, 56-60.
[65]杨洋, 张小松, 卜玉康, 等, 1988.五层原始方程模式对西南低涡的数值预报及实验[J].云南大学学报(自然科学版), 10(1): 480-492.
[66]叶瑶, 李国平, 2016.近61年夏半年西南低涡的统计特征与异常发生的流型分析[J].高原气象, 35(4): 946-954.DOI: 10.7522/j.issn.1000-0534.2015.00073.
[67]郁淑华, 高文良, 2017.高原低涡与西南涡结伴而行的不同活动形式个例的环境场和位涡分析[J].大气科学, 41(4): 831-856.DOI: 10.3878/j.issn.1006-9895.1612.16213.
[68]张顺利, 陶诗言, 张庆云, 等, 2002.长江中下游致洪暴雨的多尺度特征[J].科学通报, 47(6): 467-473.DOI: 10.1360/csb2002-47-6-467.
[69]赵思雄, 傅慎明, 2007.2004年9月川渝大暴雨期间西南低涡结构及其环境场的分析[J].大气科学, 31(6): 1059-1075.DOI: 10.3878/j.issn.1006-9895.2007.06.03.
[70]赵平, 孙淑清, 1991.一次西南低涡形成过程的数值试验和诊断(一)—地形动力作用和潜热作用对西南低涡影响的数值试验对比分析[J].大气科学, 15(6): 46-52.
[71]郑庆林, 邢久星, 1990.一个六层亚洲有限区域模式及对一次西南涡过程的数值模拟[J].应用气象学报, 1(1): 12-23.
[72]邹波, 陈忠明, 2000.一次西南低涡发生发展的中尺度诊断[J].高原气象, 19(2): 141-149.
[73]周长艳, 李跃清, 彭俊, 2006a.高原东侧川渝盆地降水及水资源特征及变化[J].大气科学, 30(6): 1217-1226.DOI: 10.3878/j.issn.1006-9895.2006.06.16.
[74]周长艳, 李跃清, 彭俊, 2006b.九寨沟、 黄龙风景区的降水特征及其变化[J].资源科学, 28(1): 113-119.DOI: 10.3321/j.issn: 1007-7588.2006.01.019.
[75]周长艳, 蒋兴文, 李跃清, 等, 2009.高原东部及邻近地区空中水汽资源的气候变化特征[J].高原气象, 28(1): 55-63.
[76]朱禾, 邓北胜, 吴洪, 2002.湿位涡守恒条件下西南低涡的发展[J].气象学报, 60(3): 343-351.
[77]竺可桢, 1916.中国之雨量及风暴说[J].科学, 2(2): 206-216.
Outlines

/