Possible Linkage between Land Surface Thermal Anomalies in Mid-High Latitudes of Eurasian Continent and Atmospheric General Circulation in Winter

  • XU Chen ,
  • CHEN Haishan ,
  • HUANG Lingfang
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster (Nanjing University of Information Science & Technology), Ministry of Education, Nanjing 210044, China;2. School of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China;3. Shanghai Meteorological Sci-Tech Service Center, Shanghai 200030, China

Received date: 2014-01-16

  Online published: 2015-12-28

Abstract

Based on ERA40 monthly reanalysis data, the features of the land surface thermal anomalies over the mid-high latitudes of the Eurasian Continent during 1958-2001 were investigated, and the possible linkage between the land surface thermal anomalies and the atmospheric general circulation was further explored. Because of the global warming in recent years, the land surface temperature warming trend is more obvious and higher in the north of Lake Balkhash and Lake Baikal than the lower latitudes. Due to the inhomogeneously meridional land surface thermal changes, there is an apparent decadal weakening of the meridional land surface temperature gradient over the mid-latitude region of Eurasian Continent (around 40°N-50°N) at the early 1980. Decreased meridional gradient of the surface soil temperature tends to decrease the meridional gradients of both the surface air temperature and the air temperature in the lower atmosphere. According to thermal wind theory, decreased meridional temperature gradient will result in the decrease of the atmospheric baroclinicity. Meanwhile, the gradient of low level troposphere temperature, the vertical shear of zonal wind and zonal wind itself will be decreased.

Cite this article

XU Chen , CHEN Haishan , HUANG Lingfang . Possible Linkage between Land Surface Thermal Anomalies in Mid-High Latitudes of Eurasian Continent and Atmospheric General Circulation in Winter[J]. Plateau Meteorology, 2015 , 34(6) : 1584 -1592 . DOI: 10.7522/j.issn.1000-0534.2014.00062

References

[1]IPCC. Climate Change 2007: The physical science basis [M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007: 748-845.
[2]Hansen J, Sato M, Ruedy R, et al. Global temperature change[J]. PNAS, 2006, 103(39): 14288-14293, doi:10.1073/pnas.0606291103.
[3]江志红, 李建平, 王梅华, 等. 20世纪全球温度场趋势变化的区域特征分析[J].气候与环境研究, 2004, 9(3): 422-434.
[4]张秀年, 严华生, 郭世昌. “全球变暖”背景下的全球温度时空变化特征[J]. 热带气象学报, 2004, 20(5): 561-570.
[5]Hansen J, Ruedy R, Glascoe J, et al. GISS analysis of surface temperature change[J]. J Geophys Res: Atmospheres, 1999, 104(D24): 30997-31022.
[6]Hansen J, Ruedy R, Sato M, et al. Global surface temperature change[J]. Reviews of Geophysics, 2010, 48(4): RG4004, doi: 10.1029/2010RG000345.
[7]Fu Q, Johanson C M, Wallace J M, et al. Enhanced mid-latitude tropospheric warming in satellite measurements[J]. Science, 2006, 312(5777): 1179-1179.
[8]王绍武, 叶瑾琳. 近百年全球气候变暖分析[J]. 大气科学, 1995, 19(5): 545-553.
[9]季明霞. 欧亚大气环流与地表气温之间的反馈和相互作用[D]. 兰州: 兰州大学, 2009: 29-30.
[10]姚洁, 陈海山, 朱伟军. 北半球陆面过程对全球变暖响应特征的初步分析[J]. 大气科学学报, 2010, 33(2): 220-226.
[11]华文剑, 陈海山. 陆面过程对全球变暖的响应及可能机制--基于CMIP3的多模式集合分析[J]. 大气科学, 2011, 35(1): 121-133.
[12]Cohen J, Entekhabi D. Eurasian snow cover variability and Northern Hemisphere climate predictability[J]. Geophys Res Lett, 1999, 26(3): 345-348.
[13]Bojariu R, Gimeno L. The role of snow cover fluctuations in multiannual NAO persistence[J]. Geophys Res Lett, 2003, 30(4), doi: 10.1029/2002GL015651.
[14]Gong G, Cohen J, Entekhabi D, et al. Hemispheric-scale climate response to Northern Eurasia land surface characteristics and snow anomalies[J]. Global and Planetary Change, 2007, 56(3): 359-370.
[15]Blanford H F. On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India[J]. Proceedings of the Royal Society of London, 1884, 37(232-234): 3-22.
[16]Cohen J, Rind D. The effect of snow cover on the climate[J]. J Climate, 1991, 4(7): 689-706.
[17]Bamzai A S, Shukla J. Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study[J]. J Climate, 1999, 12(10): 3117-3132.
[18]Robock A, Mu M, Vinnikov K, et al. Land surface conditions over Eurasia and Indian summer monsoon rainfall[J]. Geophys Res Lett, 2003, 108(D4): 4131-4144.
[19]左志燕, 张人禾. 中国东部夏季降水与春季土壤湿度的联系[J]. 科学通报, 2007, 52(14): 1722-1724.
[20]Zhang R, Zuo Z. Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China[J]. J Climate, 2011, 24(13): 3309-3322.
[21]Zhang J, Dong W. Soil moisture influence on summertime surface air temperature over East Asia[J]. Theoretical and Applied Climatology, 2010, 100(1-2): 221-226.
[22]Zhan Y, Lin Z. The relationship between June precipitation over mid-lower reaches of the Yangtze River basin and spring soil moisture over the East Asian monsoon region[J]. Acta Meteor Sini, 2011, 25(3): 355-363.
[23]梁乐宁, 陈海山. 春季华南土壤湿度异常与中国夏季降水的可能联系[J]. 大气科学学报, 2010, 33(5): 536-546.
[24]Chahine T M. The hydrological cycle and its influence on climate[J]. Nature, 1992, 359: 373-380.
[25]沈学顺, 木本昌秀. 春季欧亚大陆地表气温变化特征的气候意义[J]. 大气科学, 2007, 31(1): 19-27.
[26]任菊章, 琚建华, 赵刚. 亚洲冬季地表气温与北半球海平面气压场的关系[J]. 气候与环境研究, 2003, 8(4): 436-441.
[27]李巧萍, 丁一汇. 植被覆盖变化对区域气候影响的研究进展[J]. 南京气象学院学报, 2004, 27(1): 131-140.
[28]于琳琳, 陈海山. 青藏高4月陆面状况和地表加热异常与中国夏季降水的联系[J]. 高原气象, 2012, 31(5): 1173-1182.
[29]符淙斌, 袁慧玲. 恢复自然植被对东亚夏季气候和环境影响的一个虚拟试验[J]. 科学通报, 2001, 46(8): 691-695.
[30]张少波, 陈玉春, 吕世华, 等. 青藏高原植被变化对中国东部夏季降水影响的模拟研究[J]. 高原气象, 2013, 32(5): 1236-1245, doi: 10.7522/j.issn.1000-0534.2012.00119.
[31]赵勇, 钱永甫. 青藏高原地表热力异常与我国江淮地区夏季降水的关系[J]. 大气科学, 2007, 31(1): 145-154.
[32]赵勇, 李如琦, 杨霞, 等. 5月青藏高原地区感热异常对北疆夏季降水的影响[J]. 高原气象, 2013, 32(5): 1215-1223, doi: 10.7522/j.issn.1000-0534.2012.00117.
[33]Li C, Yanai M. The onset and interannual variability of the A-sian summer monsoon in relation to land-sea thermal contrast[J]. J Climate, 1996, 9(2): 358-375.
[34]刘新, 吴国雄, 李伟平, 等. 夏季青藏高原加热和大尺度流场的热力适应[J]. 自然科学进展, 2001, 11(1): 33-39.
[35]梁潇云, 刘屹岷, 吴国雄. 青藏高原隆升对春、 夏季亚洲大气环流的影响[J]. 高原气象, 2005, 24(6): 610-614.
[36]王同美, 吴国雄, 万日军. 青藏高原的热力和动力作用对亚洲季风环流的影响[J]. 高原气象, 2008, 27(1): 1-9.
[37]周秀骥, 赵平, 陈军明, 等. 青藏高原热力作用对北半球气候影响的研究[J]. 中国科学(D辑), 2009, 39(11): 1473-1486.
[38]晏红明, 杨辉, 王灵, 等. 印度半岛热力变化对亚洲季风环流异常的影响[J]. 高原气象, 2010, 29(6): 1452-1463.
[39]梁红丽, 晏红明, 段玮. 冬季亚洲大陆的热力差异和中国气候的关系[J]. 热带气象学报, 2010, 26(4): 409-420.
[40]张耀存, 钱永甫. 南海季风区地面温度变化特征及其与季风爆发的联系[J]. 南京气象学院学报, 2002, 25(2): 192-198.
[41]徐康, 祝从文, 何金海. 近50年环贝加尔湖区变暖对中国华北夏季降水的影响机理[J]. 高原气象, 2011, 30(2): 309-317.
[42]Rossby C G, Willett H C. The circulation of the upper troposphere and lower stratosphere[J]. Science, 1948, 108(2815): 643-652.
[43]Thompson D W J, Wallace J M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophys Res Lett, 1998, 25(9): 1297-1300.
[44]刘飞, 何金海, 姜爱军. 亚洲夏季西风指数与中国夏季降水的关系[J]. 南京气象学院学报, 2006, 29(4): 517-525.
Outlines

/