Analysis on Unusual Path Associated with Mesoscale Convective System in a Continuous Heavy Rain

  • GUO Damei ,
  • LIU Yong ,
  • MA Xiaohua ,
  • LI Pingyun
Expand
  • Shaanxi Meteorological Observatory, Xi'an 710015, China

Received date: 2014-01-13

  Online published: 2015-12-28

Abstract

By using observation data, NCEP/NCAR reanalysis data, FY-2E product and the automatic station data, a continued strong convection rainstorm in North China to the eastern region of Northwest China is analyzed. The obtained result are as follows.Firstly, 500 hPa short wave trough which locates in the bottom of the northeast cold vortex, the northeast wind on the east side of the continent high, shear line and cold temperature advection in lower levels and the cold air in surface provide favorable synoptic background for the mesoscale convective system's occurrence, development and movement. Secondly, meso-β scale and meso-α scale convective systems cause the strong convection rainstorm. With 23 h, mesoscale convective systems move roughly from southwest to northeast. Interaction between cold air from the eastern area and warm moisture in North China, convection has triggered. Thirdly, the moving direction of MCS depends on wind direction and speed in the whole layer. When there is the weak wind speed on high layer and middle layer and opposite strong wind speed on low layer, the mesoscale convective system's moving path is consist with wind direction on low layer. When there is the weak wind speed on low layer and opposite strong wind on high and middle layers, strong wind speed on high and middle layers, the mesoscale convective system's moving path is consist with wind direction on high and middle layers. Fourthly, the all layers are no temperature advection before the convective precipitation occurs. At the same time, the high and middle layers wind is very weak, and the vertical wind shear is very small.

Cite this article

GUO Damei , LIU Yong , MA Xiaohua , LI Pingyun . Analysis on Unusual Path Associated with Mesoscale Convective System in a Continuous Heavy Rain[J]. Plateau Meteorology, 2015 , 34(6) : 1648 -1657 . DOI: 10.7522/j.issn.1000-0534.2014.00076

References

[1]赵桂香, 赵建峰, 杨东, 等. 山西一次大暴雨过程云图及环境场的特征分析[J]. 高原气象, 2013, 32(6): 1747-1757, doi: 10.7522/j.issn.1000-0534.2012.00163.
[2]刘新伟, 段海霞, 杨晓军, 等. 2010年7月甘肃大暴雨及其低涡结构分析[J]. 高原气象, 2013, 32(4): 1032-1041, doi: 10.7522/j.issn.1000-0534.2012.00098.
[3]赵玉春, 王叶红. 高原涡诱生西南涡特大暴雨成因的个例研究[J]. 高原气象, 2010, 29(4): 819-831.
[4]钟水新, 王东海, 张人禾, 等. 一次冷涡发展阶段大暴雨过程的中尺度对流系统研究[J]. 高原气象, 2013, 32(2): 435-445, doi: 10.7522/j.issn.1000-0534.2012.00042.
[5]许美玲, 尹丽云, 金少华, 等. 云南突发性特大暴雨过程成因分析[J]. 高原气象, 2013, 32(4): 1062-1073, doi: 10.7522/j.issn.1000-0534.2012.00085.
[6]徐双柱, 吴翠红, 吴涛. “2011.6.18”湖北大暴雨成因分析[J]. 高原气象, 3013, 32(4): 1106-1114, doi: 10.7522/j.issn.1000-0534.2012.00104.
[7]黎惠金, 李向红, 黄芳, 等. 广西一次特大暴雨的MCC演变过程及结构特征分析[J]. 高原气象, 2013, 32(3): 806-817, doi: 10.7522/j.issn.1000-0534.2012.00074.
[8]井喜, 李社宏, 屠妮妮, 等. 黄河中下游一次MCC和中-β尺度强对流云团相互作用暴雨过程综合分析[J]. 高原气象, 2011, 30(4): 913-928.
[9]杨康权, 张琳, 肖递祥, 等. 四川盆地西部一次大暴雨过程的中尺度特征分析[J]. 高原气象, 2013, 32(2): 357-367, doi: 10.7522/j.issn.1000-0534.2012.00035.
[10]井喜, 屠妮妮, 井宇, 等. 中国MCC 时空分布与天气学特征分析[J]. 高原气象, 2013, 32(6): 1597-1607, doi: 10.7522/j.issn.1000-0534.2012.00141.
[11]杜小玲, 杨静, 彭芳, 等. 贵州望谟初夏暴雨环境场和物理量场合成分析[J]. 高原气象, 2013, 32(5): 1400-1413, doi: 10.7522/j.issn.1000-0534.2012.00131.
[12]王伏村, 许东蓓, 修韶宇, 等. 一次西北地区东部大暴雨的物理机制分析[J]. 高原气象, 2014, 33(6): 1501-1513, doi: 10.7522/j.issn.1000-0534.2013.00104.
[13]白涛, 李崇银, 王铁, 等. 干侵入对陕西“2008.07.21”暴雨过程的影响分析[J]. 高原气象, 2013, 32(2): 345-356, doi: 10.7522/j.issn.1000-0534.2012.00034.
[14]徐燚, 闫敬华, 王谦谦, 等. 华南暖区暴雨的一种低层重力波触发机制[J]. 高原气象, 2013, 32(4): 1050-1061, doi: 10.7522/j.issn.1000-0534.2012.00100.
[15]杜小玲, 彭芳, 吴古会, 等. 应用新型辐散方程诊断“6.28”关岭大暴雨的激发和维持机制[J]. 高原气象, 2013, 32(3): 728-738, doi:10.7522/j.issn.1000-0534.2012.00068.
[16]葛非, 郭胜利, 谌芸, 等. 对流层中层大气能量转换特征与暴雨激发和维持的关系[J]. 高原气象, 2013, 32(3): 762-769, doi: 10.7522/j.issn.1000-0534.2012.00071.
[17]Shi J, Scofield R A. Satellite-observed mesoscale convective system (MCS) propagation characteristics and a 3-12 hour heavy precipitation forecast index[R]. NOAA Tech Memo NESDIS 20, US Dept of Commerce, Washington, DC, 1987: 43.
[18]Corfidi S F, Merritt J H, Fritsch J M. Predicting the movement of mesoscale convective complexes[J]. Wea Forecasting, 1996, 11: 41-46.
[19]Charles A, Doswell Ⅲ, Harold E, et al. Flash Flood Forecasting: An ingredients-based methodology[J]. Wea Forecasting, 1996, 11: 560-581.
[20]寿绍文, 励申申, 林开平, 等. 一次江淮暴雨过程的中β尺度分析[J]. 应用气象学报, 1994, 5(3): 257-265.
[21]郑媛媛, 张小玲, 朱红芳, 等. 2007年7月8日特大暴雨过程的中尺度特征[J]. 气象, 2009, 35(2): 3-8.
Outlines

/