Impact of Thermal Action on Different Intensity Sandstorms in Ningxia

  • CHEN Yuying ,
  • CHEN Nan ,
  • TAN Zhiqiang ,
  • ZHENG Xiaohui
Expand
  • The Ningxia Key Laboratory of Meteorological Disaster Prevention and Mitigation Reduction, Yinchuan 750002, China;2. Ningxia Meteorological Observatory, Yinchuan 750002, China

Received date: 2014-05-02

  Online published: 2015-12-28

Abstract

Based on conventional observation data and the ECWMF ERA-Interim 6 hourly reanalysis data with resolution 0.25°×0.25°, the frontogenesis function and the surface heat flux on thunderstorm gale on 18 May, strong wind and dust on 28 February and 9 March 2013 in Ningxia were comparative analyzed. The result shows that surface temperature was increased rapidly due to the developed thermal low or Mongolia cyclone ahead of cold fronts, then the temperature and pressure gradient across the fronts and the boundary instability enhanced by impacts of surface sensible heat flux. Further, the frontogenesis and dry convection could be easily developed, which were beneficial thermal conditions for the strong wind and sandstorms weather. The wind and sandstorms appeared in the dense gradient belt of the sensitive heat flux, the strong sandstorm appeared in the amplitude center of the sensitive heat flux. Meanwhile the important indicators of forecasting and warning for the wind and sandstorm weather in Ningxia are the intensity of the cold air, the position of high pressure ridge, the center value of the frontogenesis function, the sensitive heat flux and the obvious frontogenesis below mid and low level troposphere.

Cite this article

CHEN Yuying , CHEN Nan , TAN Zhiqiang , ZHENG Xiaohui . Impact of Thermal Action on Different Intensity Sandstorms in Ningxia[J]. Plateau Meteorology, 2015 , 34(6) : 1668 -1676 . DOI: 10.7522/j.issn.1000-0534.2014.00090

References

[1]尹晓惠. 我国沙尘天气研究的最新进展与展望[J]. 中国沙漠, 2009, 29(4): 728-733.
[2]丁瑞强, 王式功, 尚可政, 等. 中国春季沙尘暴的趋势变化及年代际变化[J]. 高原气象, 2004, 23(5): 660-666.
[3]尹晓惠, 时少英, 张明英, 等. 北京沙尘天气的变化特征及其沙尘源地分析[J]. 高原气象, 2007, 26(5): 1039-1044.
[4]牛生杰, 孙继明, 桑建人. 贺兰山地区沙尘暴发生次数的变化趋势[J]. 中国沙漠, 2000, 20(1): 55-58.
[5]牛生杰, 章澄昌, 孙继明. 贺兰山地区沙尘暴若干问题的观测研究[J]. 气象学报, 2001, 59(2): 196-205.
[6]陈楠, 陈豫英. 宁夏近四十年大风、 沙尘演变趋势分析.天气预报技术文集[M]. 北京: 气象出版社, 2001: 226-230.
[7]周自江, 王锡稳, 牛若芸. 近47年中国沙尘暴气候特征研究[J]. 应用气象学报, 2002, 13(2): 193-200.
[8]王式功, 董光荣, 陈惠忠, 等. 沙尘暴研究的进展[J]. 中国沙漠, 2000, 20(4): 349-356.
[9]袁薇. 中国沙尘天气对区域环境影响的初步研究[D]. 兰州: 兰州大学, 2006.
[10]Shao Y P, Leys J F, Me Tainsh G H, et al. Numerical simulation of the October 2002 dust event in Australia[J]. J Geophys Res, 2007, 112, D08207, doi: 10.1029/2006JD007767.
[11]许宝玉, 钱正安, 焦彦军. 我国西北地区沙尘暴的分级标准和中国沙尘暴研究[M] //中国沙尘暴研究. 北京: 气象出版社, 1997: 44-51.
[12]赵庆云, 张武, 吕萍, 等. 河西走廊“2010.04.24”特强沙尘暴特征分析[J]. 高原气象, 2012, 31(3): 688-696.
[13]云静波, 姜学恭, 孟雪峰, 等. 冷锋型和蒙古气旋型沙尘暴过程若干统计特征的对比分析[J]. 高原气象, 2013, 32 (2): 423-434, doi: 10.7522/j.issn.1000-0534.2012.00041.
[14]李彰俊, 孙照渤, 姜学恭, 等. 内蒙古中西部地面感热通量影响沙尘暴的观测分析[J]. 中国沙漠, 2008, 28(3): 537-543.
[15]孙军, 姚秀萍. 一次沙尘暴过程锋生函数和地表热通量的数值诊断[J]. 高原气象, 2002, 21(5): 487-494.
[16]姜学恭, 李彰俊, 程丛兰, 等. 地面加热对沙尘暴数值模拟结果的影响研究[J]. 中国沙漠, 2010, 30(1): 182-192.
[17]赵建华, 李耀辉, 蒲朝霞, 等. GRAPES沙尘数值预报系统对一次沙尘暴沙尘浓度同化模拟试验分析[J]. 高原气象, 2012, 31 (3): 697-705.
[18]王学佳, 杨梅学, 万国宁. 近60年青藏高原地区地面感热通量的时空演变特征[J]. 高原气象, 2013, 32(6): 1557-1567, doi: 10.7522/j.issn.1000-0534.2012.00151.
[19]王丽娟, 王俊超, 叶金桃, 等. 北方一次强沙尘暴过程的诊断分析和数值模拟[J]. 高原气象, 2013, 32(4): 1010-1018, doi: 10.7522/j.issn.1000-0534.2012.00097.
[20]王伏村, 许东蓓, 王宝鉴, 等. 河西走廊一次特强沙尘暴的热力动力特征分析[J]. 气象, 2012, 38(8): 950-959.
[21]姜学恭, 云静波. 三类沙尘暴过程环流特征和动力结构对比分析[J]. 高原气象, 2014, 33(1): 241-251, doi: 10.7522/j.issn.1000-0534.2012.00172.
[22]文润琴. 宁夏寒潮3-6天的客观因子模式预报方法[J]. 宁夏气象, 1994(1): 5-7.
[23]Miller James E. On the concept of frontogenesis[J]. J Meteor, 1948, 5(4): 169-171.
Outlines

/