Numerical Simulations of Cloud Structure and Seedability of a Precipitating Stratiform in Hebei

  • SUN Jing ,
  • YANG Wenxia ,
  • ZHOU Yuquan
Expand
  • Chinese Academy of Meteorological Sciences, Weather Modification Center of China Meteorological Administration, Beijing 100081, China;2. Hebei Weather Modification Office, Shijiazhuang 050021, China

Received date: 2013-12-31

  Online published: 2015-12-28

Abstract

A case of westerly trough precipitating stratiform cloud on 21 September 2012 is simulated using the mesoscale model MM5. Meso- and micro-structures of this precipitation are analyzed using simulations and observations of satellite, radar and aircraft. The large-scale weather systems of the precipitation are westerly trough on 500 hPa and shear line on 700 hPa. There is no obviously cold front at low levels. The cloud structures are different at different area of the cloud system. In the forepart, the cloud system composes of only supercooled cloud water and ice particles. There is a little cold cloud precipitation. The cloud top temperature is -35 ℃. Near the line of westerly trough, the cloud is mixed phase with more ice, snow, graupel and more supercooled cloud water in cold area and more cloud water and rain water in warm area. The cloud top temperature is -20 ℃. In the rear part, the cloud system composes of mostly warm cloud water. The cloud top temperature is -5 ℃. There is a little warm cloud precipitation. The production of cloud water needs updraft and high saturation and is proportional to them. The seeding areas are distinguished by supercooled water, updraft, number concentration of ice, temperature and precipitation intensity. It is strongly seedable near the trough line due to the much more supercooled water. The seeding height is 3.8~6.5 km. These areas have good potential of artificial precipitation enhancement.

Cite this article

SUN Jing , YANG Wenxia , ZHOU Yuquan . Numerical Simulations of Cloud Structure and Seedability of a Precipitating Stratiform in Hebei[J]. Plateau Meteorology, 2015 , 34(6) : 1699 -1710 . DOI: 10.7522/j.issn.1000-0534.2014.00086

References

[1]黄美元. 云和降水物理[M]. 北京: 科学出版社, 1999.
[2]游来光, 马培民, 胡志晋. 北方层状云人工降水试验研究[J]. 气象科技, 2002, 30 (增刊1): 19-56.
[3]姚展予. 中国气象科学研究院人工影响天气研究进展回顾[J]. 应用气象学报, 2006, 17(6): 786-795.
[4]洪延超. 层状云结构和降水机制研究及人工增雨问题讨论[J]. 气候与环境研究, 2012, 17 (6): 937-950.
[5]杨文霞, 牛生杰, 魏俊国, 等. 河北省层状云降水系统微物理结构的飞机观测研究[J]. 高原气象, 2005, 24(1): 84-90.
[6]蔡兆鑫, 周毓荃, 蔡淼. 一次积层混合云系人工增雨作业的综合观测分析[J]. 高原气象, 2013, 32(5): 1460-1469, doi: 10.7522/j.issn.1000-0534.2012.00115.
[7]李薇, 刘岩, 袁野, 等. 吉林省春季层状云降水的雷达观测研究[J]. 高原气象, 2013, 32(5): 1485-1491, doi: 10.7522/j.issn.1000-0534.2012.00138.
[8]孙玉稳, 李宝东, 刘伟, 等. 河北秋季层状云物理结构及适播性分析[J]. 高原气象, 2015, 34(1): 237-250, doi: 10.7522/j.issn.1000-0534.2013.00172.
[9]Bergeron T. Uber der Mechanisum der Ausgeibigen Niederschlage[J]. Ber Dtsch Wetterdienstes, 1950, 12: 225-232.
[10]胡志晋, 严彩繁. 层状云微物理过程的数值模拟Ⅰ: 微物理模式[J]. 气象科学研究院院刊, 1986, 1(l): 37-52.
[11]胡志晋, 严彩繁. 层状云微物理过程的数值模拟Ⅱ: 中纬度气旋云系的微物理过程[J]. 气象科学研究院院刊, 1987, 2(2): 133-142.
[12]洪延超, 周非非. “催化-供给”云降水形成机理的数值模拟研究[J]. 大气科学, 2005, 29 (6) : 885-896.
[13]胡志晋. 层状云人工增雨机制、 条件和方法的探讨[J]. 应用气象学报, 2001, 12(增刊1): 10-13.
[14]洪延超. 层状云结构和降水机制研究及人工增雨问题讨论[J]. 气候与环境研究, 2012, 17 (6): 937-950.
[15]陶树旺, 刘卫国, 李念童, 等. 层状冷云人工增雨可播性实时识别技术研究[J]. 应用气象学报, 2001, 12(增刊1): 14-22.
[16]王以琳, 王建国. 黄淮气旋中人工增雨播云区的探讨[J]. 高原气象, 2006, 25(1): 128-137.
[17]翟菁, 周后福, 冯妍, 等. 数值模式产品应用于安徽省可增雨区预报的研究[J]. 安徽农业科学, 2008, 36(3): 1153-1155.
[18]Lou X F, Shi Y Q, Sun J, et al. Cloud-resolving model for weather modification in China[J]. China Sci Bull, 2012, 57(9): 1055-1061.
[19]杨文霞, 周毓荃, 孙晶, 等. 一次西风槽过程过冷水分布特征观测研究[J]. 气象学报, 2014, 72(3): 583-595.
[20]史月琴, 楼小凤, 邓雪娇, 等. 华南冷锋云系的人工引晶催化数值试验[J]. 大气科学, 2008, 32(6): 1256-1275.
[21]孙晶, 楼小凤, 史月琴, 等. 祁连山冬季降雪个例模拟分析(II): 人工催化试验[J]. 高原气象, 2009, 28(3): 496-506.
[22]何辉, 高茜, 李宏宇. 北京层状云人工增雨数值模拟试验和机理研究[J]. 大气科学, 2013, 37(4): 905-922.
Outlines

/