[1]Iacobelis S F, McFarquhar G M, Mitchell D, et al. The sensitivity of radiative fluxes to parameterised cloud microphysics[J]. J Climate, 2003, 16(18): 2979-2996.
[2]Ramanathan V, Crutzen R J, Kiehl J T, et al. Atmosphere-aerosols, climate, and the hydrological cycle[J]. Science, 2001, 294(5549): 2119-2124.
[3]Chen Y, Kreidenweis S, McInnes L, et al. Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere[J]. Geophys Res Lett, 1998, 25(9): 1391-1394.
[4]Rosenfeld D, Rudich Y, Lahav R. Desert dust suppressing precipitation: A possible desertification feedback loop[J]. Proc Natl Acad Sci, USA, 2001, 98: 5975-5980.
[5]Sassen K. Indirect climate forcing over the western US from Asian dust storms[J]. Geophys Res Lett, 2002, 29(10): 103-1-103-4.
[6]Zuberi B, Bertram A K, Cassa C A, et al. Heterogeneous nucleation of ice in (NH4)2SO4 -H2O particles with mineral dust immersions[J]. Geophys Res Lett, 2002, 29(10): 142-1-142-4.
[7]Schaefer V J. The formation of ice crystals in the laboratory and the atmosphere[J]. Chem Rev, 1949, 44: 291-320.
[8]Schaefer V J. The concentrations of ice nuclei in air passing the summit of Mt. Washington[J]. Bull Amer Meteor Soc, 1954, 35: 310-314.
[9]Gagin A. Ice nuclei, their physical characteristics and possible effect on the precipitation initiation[C]. Proc Int Conf on Cloud Physics, Tokyo and Sapporo, Japan, 1965: 155-162.
[10]Levi Y, Rosenfeld D. Ice nuclei, rainwater chemical composition, and static seeding effects in Israel[J]. J Appl Meteor, 1996, 35: 1494-1501.
[11]Sassen K, Demott P J, Prospero J M, et al. Saharan Dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE Results[J]. Geophys Res Lett, 2003, 30: 1633-1636.
[12]Ansmann A, Mattis I, Müller D, et al. Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar[J]. J Geophys Res, 2005, 110, D18S12, doi: 10.1029/2004jd005000.
[13]Koenig L R. The glaciating behavior of small cumulonimbus clouds[J]. J Atmos Sci, 1963, 20: 29-47.
[14]Braham R R Jr. What is the role of ice in summer rain showers[J]. J Atmos Sci, 1964, 21: 640-645.
[15]Mossop S C. Production of secondary ice particles during the growth of graupel by riming[J]. Quart J Roy Meteor Soc, 1976, 102: 45-57.
[16]Brownscombe J L, Hallett J. Experimental and field studies of precipitation of particles formed by the freezing of supercooled water Quari[J]. Quart J Roy Meteor Soc, 1967, 93: 455-473.
[17]Dye J E, Hobbs P V. The influence of environmental parameters on the freezing and fragmentation of suspended water drops[J]. J Atmos Sci, 1968, 25: 82-96.
[18]Hallett J, Mossop S C. Production of secondary ice particles during the riming process[J]. Nature, 1974, 249: 26-28.
[19]Harris-Hobbs R L, Cooper W A. Field evidence supporting quantitative predictions of secondary ice production-rates[J]. J Atmos Sci, 1987, 44: 1071-1082.
[20]Blyth A M, Latham J. A multi-thermal model of cumulus glaciation via the Hallett-Mossop process[J]. Quart J Roy Meteor Soc, 1997, 123: 1185-1198.
[21]Hogan R J, Field P R, Illingworth A J, et al. Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar[J]. Quart J Roy Meteor Soc, 2002, 128: 451-476.
[22]Clark P D, Choularton T W, Brown P R A, et al. Numerical modelling of mixed-phase frontal clouds observed during the CWVC project[J]. Quart J Roy Meteor Soc, 2005, 131: 1677-1693.
[23]Huang Y H, Blyth A M, Brown P R A, et al. The development of ice in a cumulus cloud over Southwest England[J]. New Journal of Physics, 2008, 10(10): 4306-4309.
[24]Crosier J, Bower K N, Choularton T W, et al. Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus[J]. Atmos Chem Phys, 2011, 11: 257-273.
[25]Choi Y S, Lindzen R S, Ho C H, et al. Space observations of cold-cloud phase change[J]. Proc Natl Acad Sci, USA, 2010, 107: 11211-11216.
[26]Rosenfeld D, Lensky I M. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds[J]. Bull Amer Meteor Soc, 1998, 79: 2457-2476.
[27]Rosenfeld D, Woodley W L. Deep convective clouds with sustained supercooled liquid water down to -37.5 ℃[J]. Nature, 2000, 405(6785): 440-442.
[28]Yuan T, Martins J V, Li Z. Estimating glaciation temperature of deep convective clouds with remote sensing data[J]. Geophys Res Lett, 2010, 37, L08808, doi: 10.1029/2010GL042753.
[29]Rosenfeld D, Yu Xing, Liu Guihua, et al. Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fire[J]. Geophys Res Lett, 2011, 38(21): 759-775.
[30]戴进, 余兴, 刘贵华, 等. 青藏高原雷暴弱降水云微物理特征的卫星反演分析[J]. 高原气象, 2011, 30(2): 288-298.
[31]徐小红, 余兴, 朱延年, 等. 一次强飑线云结构特征的卫星反演分析[J]. 高原气象, 2012, 31(1): 258-268.
[32]Yuan T L, Li Z Q. General macro- and micro-physical properties of deep convective clouds as observed by MODIS[J]. J Climate, 2010, 23(13): 3457-3473.
[33]Omar A H, Winker D M, Kittaka C K, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. J Atmos Oceanic Technol, 2009, 26: 1994-2014.
[34]Andreae M O. Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions[J]. Atmos Chem Phys, 2009, 9: 543-556.
[35]Hudson J G, Noble S, Jha V, et al. Correlations of small cumuli droplet and drizzle drop concentrations with cloud condensation nuclei concentrations[J]. J Geophys Res, 2009, 114(D5): 730-734.