Spatial Distribution of Error from the Convective Precipitation Estimation of Radar and Optimization of Z-R Relationship

  • YANG Jie ,
  • LIU Liping ,
  • ZHAO Chengcheng ,
  • WU Yahao
Expand
  • Chengdu Jinjiang Electronic System Engineering Co. LTD, Chengdu 610051, China;2. State Key Lab of Severe Weather Chinese Academy of Meteorological Sciences, Beijing 100081, China;3. Weifang Municipal Meteorological Bureau, Weifang 261011 China;4. Lightning Protection Center of Hunan, Changsha 410007, China

Received date: 2014-01-16

  Online published: 2015-12-28

Abstract

In the quantitative precipitation estimation of China New Generation Weather Radar (CINRAD) adjusted with rainfall stations, better matching between radar echo intensity and the observation from rainfall stations is the key to fit Z-R relationship accurately. The large spatial and temporal changes characteristics of convective precipitation echo intensity have a serious impact on the radar and rainfall station data matching and the accuracy of quantitative precipitation estimation. According to analysis the spatial distribution of error between the convective precipitation estimation of radar and rainfall station of three convective precipitation process in Henan Province, the following rules are founded: most seriously overvalued radar echo intensity points and some underestimate points are distributed on the edge of the strong echo intensity area with the single point's echo-intensity changes with time; part of rainfall stations with zero value observation for part time are distributed in the center of the strong echo intensity. The analysis shows the sudden heavy precipitation and heavy precipitation center is easy to cause the large error of observation from rainfall stations and therefore cause great influence on the Z-R relationship fitting. According to the characteristic of convective echo-intensity and the matching relationship between the echo intensity and rainfall stations got in this paper, adding method of eliminating large error rainfall stations by using the echo intensity gradient index and also method to optimize the average echo intensity and cumulative time are proposed, and get the best solution for convective precipitation estimation. Through analyze influences of all above factors on the precipitation estimation in detail, the results show that eliminate the large error rainfall stations by a certain index and then use the best precipitation estimation solution, and these improve estimation precision for convective precipitation.

Cite this article

YANG Jie , LIU Liping , ZHAO Chengcheng , WU Yahao . Spatial Distribution of Error from the Convective Precipitation Estimation of Radar and Optimization of Z-R Relationship[J]. Plateau Meteorology, 2015 , 34(6) : 1785 -1796 . DOI: 10.7522/j.issn.1000-0534.2014.00074

References

[1]Young C B, Bradley A A, Krajewski W F, et al. Evaluating NEXRAD multisensor precipitation estimates for operational hydrologic forecasting[J]. J Hydrometeor, 2000, (1): 241-254.
[2]李建通, 张培昌. 最优插值法用于天气雷达测定区域降水量[J]. 台湾海峡, 1996, 15(3): 255-259.
[3]李建通, 高守亭, 郭林, 等. 基于分步校准的区域降水量估测方法研究[J]. 大气科学, 2009, 33(3): 501- 512.
[4]赵坤, 葛文忠, 刘国庆, 等. 在雷达测雨和洪水预报中自适应卡尔曼滤波法的应用[J]. 高原气象, 2005, 24(6): 956-965.
[5]徐枝芳, 熊军, 葛文忠. 使用遗传算法优化雷达定量降水估测<em>Z</em>-<em>R</em>关系[J]. 高原气象, 2006, 25(4): 710-715.
[6]刘晓阳, 杨洪平, 李建通, 等. 新一代天气雷达定量估测降水估测集成系统[J]. 气象, 2010, 36(4): 90-95.
[7]汪瑛, 冯业荣, 蔡锦辉, 等. 雷达定量降水动态分级Z-I关系估算方法[J]. 热带气象学报, 2011, 27(4): 601-608.
[8]庄薇, 刘黎平, 王改利, 等. 青藏高原复杂地形区雷达估测降水方法研究[J]. 高原气象, 2013, 32(5): 1224-1235, doi: 10.7522/j.issn.1000-0534.2012.00118.
[9]Wang Gaili, Liu Liping, Ding Yuanyuan. Improvement of radar quantitative precipitation estimation based on real-time adjustments to <em>Z</em>-<em>R</em> relationships and inverse distance weighting correction schemes[J]. Atmos Sci, 2012, 29(3): 575-584.
[10]邵月红, 张万昌, 刘永和, 等. BP神经网络在多普勒雷达降水估测中的应用[J]. 高原气象, 2009, 28(4): 846-853.
[11]马建立, 阮征, 黄钰. 风廓线雷达估测降水云中大气垂直速度的一种方法[J]. 高原气象, 2015, 34(3): 825-831, doi: 10.7522/j.issn.1000-0534.2013.00161.
[12]东高红, 刘黎平. 雷达与雨量计联合估测降水的相关性分析[J]. 应用气象学报, 2012, 38(9): 1042-1052.
[13]刘红燕, 雷恒池. 基于地面雨滴谱资料分析层状云和对流云降水的特征[J]. 大气科学, 2006, 30(4): 693-702.
[14]仲凌志, 刘黎平, 顾松山. 层状云和对流云的雷达识别及在估测雨量中的应用[J]. 高原气象, 2007, 26(3): 593-602.
[15]肖艳姣, 刘黎平. 三维雷达反射率资料用于层状云和对流云的识别研究[J]. 大气科学, 2007, 31(4): 645-654.
[16]张晰莹, 那济海, 张礼宝, 等. 新一代天气雷达在临近预报中的分析与应用[M]. 北京: 气象出版社, 2008: 157-162.
[17]俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 2006: 282-297.
[18]任芝花, 冯明农, 张洪政, 等. 自动与人工观测降雨量的差异及相关性[J]. 应用气象学报, 2007, 18(3): 358-364.
[19]刘黎平, 吴林林, 杨引明. 基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析[J]. 气象学报, 2007, 65(2): 252-260.
[20]刘黎平, 王致君. 双线偏振雷达探测的云和地物回波的特性及其识别方法[J]. 高原气象, 1996, 15(3): 303-310.
[21]王红艳, 刘黎平, 肖艳姣, 等. 新一代天气雷达三维数字组网软件系统设计与实现[J]. 气象, 2009, 35(6): 13-18.
[22]肖艳姣, 刘黎平. 新一代天气雷达网资料的三维格点化及拼图方法研究[J]. 气象学报, 2006, 64(5): 647-657.
[23]吴非洋. 河南省自动气象站校准中的一些问题及其解决办法[J]. 气象与环境科学, 2011, 34: 157-159.
[24]孙嫣, 边文超, 郭瑞宝. 不同型号雨量传感器最大允许误差的探讨[J]. 气象水文海洋仪器, 2010, 1: 50-52.
[25]许嘉玲, 陈美蓉, 余燕. SL2-1型单翻斗雨量传感器感应误差的分析[J]. 气象研究与应用, 2008, 29(3): 93-94.
[26]唐驰. 强降水对JDZ02-1型翻斗式雨量计误差影响的分析[J]. 广东水利水电, 2009, 4: 83-84.
[27]朱乐坤. SL3型翻斗雨量计传感器的维护与调校方法[J]. 气象科技, 2004, 32(4): 300-302.
[28]杨杰, 刘黎平, 勾亚彬. 影响浙江地区降水估测几个因素的分析[J]. 气象, 2014, 40(5): 572-581.
[29]向芬. 自动气象站雨量传感器的维护与异常降水记录的处理[J]. 湖北气象, 2003(4): 30-31.
[30]王立山. SL3-1型雨量传感器常见故障及处理方法[J]. 农业与技术, 2012, 12: 127.
[31]张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 北京: 气象出版社, 2001: 171-183.
[32]李建通, 郭林, 杨洪平. 雷达-雨量计联合估测降水初值场形成方法探讨[J]. 大气科学, 2005, 29(6): 1010-1020.
[33]陈秋萍, 曾光平, 冯宏芳, 等. 对流云总降水量和降水效率估测[J]. 应用气象学报, 2005, 16(2): 260-263.
Outlines

/