Topological Structure of Spectrum Modal System for Atmospheric Dynamics Equations

  • LIU Chun ,
  • LIU Sibo ,
  • LI Xiumei ,
  • ZHANG Chunhui ,
  • ZHOU Wenlin ,
  • QIAO Qi
Expand
  • Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, China;2. Neijiang Meteorological Bureau, Neijiang 641000, China;3. Chengdu University of Information Technology, Chengdu 610225, China;4. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;5. Meishan Meteorological Bureau, Meishan 620020, China;6. Hefei Meteorological Bureau, Hefei 230000, China;7. Huaian Meteorological Bureau, Huai'an 223200, China

Received date: 2013-07-27

  Online published: 2015-12-28

Abstract

Compared to the fluid motion field changes with time to slow time, it is reasonable for the assumption which exogenous does not change with time, when the atmospheric circulation as the fluid movement in the exogenous driven dissipative. Therefore, this paper discusses forcing the disturbance effect of positive pressure and without divergence of system dynamic equations of atmosphere, neglecting the topography and β effect. For linear systems, the equilibrium is a saddle point structure. At this time, changes in external forcing will cause change of the structure of the system. The topological structure of the system does not change, still for three dimensional saddle point structure, when the external force to the critical point. However, invariant subspace and unstable dimension of the invariant subspace will change. When the external source force tends to zero, the system from unstable will turn to stable state. At this time, the new steady bifurcation occurs, and the saddle point structure of before into stable node structure. For nonlinear systems, do not affect the structure of positive pressure and without divergence of atmospheric system, when the external forcing is small enough. In the vicinity of the real equilibrium, there is a stable local invariant submanifold and unstable local invariant 3D saddle submanifolds invariant manifold structure. Finally, based on the saddle point structure is difficult to integral characteristic, the structure of solutions near the equilibrium point is given, through used to integral method.

Cite this article

LIU Chun , LIU Sibo , LI Xiumei , ZHANG Chunhui , ZHOU Wenlin , QIAO Qi . Topological Structure of Spectrum Modal System for Atmospheric Dynamics Equations[J]. Plateau Meteorology, 2015 , 34(6) : 1797 -1804 . DOI: 10.7522/j.issn.1000-0534.2014.00065

References

[1]丑纪范. 大气动力学的新进展[M]. 兰州: 兰州大学出版社, 1990.
[2]朱抱真. 大气和海洋的非线性动力学概论[M]. 北京: 海洋出版社, 1991.
[3]李燕, 刘新, 李伟平. 青藏高原地区不同下垫面陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(3): 581-591.
[4]何由, 阳坤, 姚檀栋, 等. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 2012, 31(5): 1183-1191.
[5]杨显玉, 文军. 扎陵湖和鄂陵湖大气边界层特征的数值模拟[J]. 高原气象, 2012, 31(4): 927-934.
[6]赵大军, 江玉华, 李莹. 一次西南低涡暴雨过程的诊断分析与数值模拟[J]. 高原气象, 2011, 30(5): 1158-1169.
[7]宋雯雯, 李国平. 一次高原低涡过程的数值模拟与结构特征分析[J]. 高原气象, 2011, 30(2): 267-275.
[8]谢志辉, 丑纪范. 大气动力学方程组全局分析的研究进展[J]. 地球科学进展, 1999, 14(2): 133-139.
[9]李建平, 丑纪范. 大气动力学方程组的定性理论及其应用[J]. 大气科学, 1998, 22(4): 443-453.
[10]李建平, 丑纪范. 非线性大气动力学的进展[J]. 大气科学, 2003, 27(4): 653-673.
[11]黄海洋, 郭柏灵. 大尺度大气方程组解和吸引子的存在性[J]. 中国科学(D辑), 2006, 36(4): 392-400.
[12]李炳熙. 高维动力系统的周期轨道: 理论和应用[M]. 上海: 上海科学技术出版社, 1984.
[13]胡隐樵. 大气热力动力学导论[M]. 北京: 地质出版社, 2002.
[14]高普云. 非线性动力学-分叉、 混沌与孤立子[M]. 长沙: 国防科技大学出版社, 2005.
[15]丑纪范. 大气科学中的非线性与复杂性[M]. 北京: 气象出版社, 2002.
[16]Vickroy J G, Dutton J A. Bifurcation and catastrophe in a simple, forced, dissipative quasi-geostrophic flow[J]. J Atmos Sci, 1979, 36(1): 42-52.
[17]Mitchil K E, Dutton J A. Bifurcation from stationary to periodic solutions in a low-order model of forced, dissiptive barotrophic flow[J]. J Atmos Sci, 1981, 38(4): 690-716.
[18]李继彬, 赵晓华, 刘正荣. 广义哈密顿系统理论及其应用[M]. 北京: 科学出版社, 2007.
[19]姚妙新, 陈芳启. 非线性理论数学基础[M]. 天津: 天津大学版社, 2001.
[20]王洪礼, 张琪昌, 郭树起, 等. 非线性动力学理论及应用[M]. 天津: 天津科学技术出版社, 2007.
[21]Robinson R C. An Introduction Dynamical Systems: Continuations and Discrete[M]. 北京: 机械工业出版社, 2005.
[22]Shilnikov L P, Shilnikov A L, Turaev D V, 等著, 金成桴译. 非线性动力学定性理论方法[M]. 北京: 高等教育出版社, 2010.
Outlines

/