Diurnal Variation Characteristics of GPS-Retrieved Precipitable Water Vapor over Mid-East Xizang in Summer

  • MA Siqi ,
  • ZHOU Shunwu ,
  • WANG Shuo ,
  • WANG Chuanhui ,
  • SUN Jihua
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China;3. Anhui Provincial Meteorological Bureau, Hefei 230031, China;4. Yunnan Provincial Institute of Meteorological Sciences, Kunming 650034, China

Received date: 2014-10-27

  Online published: 2016-04-28

Abstract

JICA (Japan International Cooperation Agency) project was carried out from 2005 to 2009 which established 24 ground-based GPS stations over Qinghai-Xizang Plateau and around area. The range of mid-east Xizang includes four GPS stations:Naqu, Dingqing, Linzhi and Longzi. Using GPS-retrieved atmospheric precipitable water vapor (PWV) data of JICA from 2010 to 2013 and the hourly AWS (Automatic Weather Station) precipitation in 2011, on the basic of revealing the diurnal variation, focus on analyzing the diurnal variation characteristics with and without precipitation, as so as the relationship with accumulative precipitation. The results are obtained as follows:(1) The PWV is decreasing while the altitude and latitude increase. And it has obvious diurnal variation over mid-east Xizang. The PWV minimum ordinarily appears at 02:00 (UTC, the same as after) and then increases quickly. The high value can usually last from 08:00 to 19:00. (2) The average and anomaly range of PWV at each station is increasing with the altitude decreasing. And the PWV values in different precipitation events are obviously different. PWV with precipitation would surpass the PWV without 10.2%~31.3%. The difference may get more significant with the altitude increasing. (3) The result of harmonic analysis indicates that the diurnal (24 h) cycle is the main signal of PWV diurnal variation at each station. The signal of semi-diurnal cycle is in different extent and it gets stronger during the day without rain except Linzhi station which has a stronger diurnal cycle. (4) The largest accumulative precipitation occurs at Dingqing station in 2011, and then follows Naqu. The diurnal variation of precipitation has significant characteristic of diurnal cycle at each station. And precipitations often occur after nightfall. The peak of rainfall frequency is usually later than hourly accumulative precipitation. (5) PWV accumulates gradually and decreases rapidly before and after precipitation. The time when PWV begins to rise is generally earlier than hourly accumulative precipitation and rainfall frequency. The precipitation reaches the peak as PWV is still high.

Cite this article

MA Siqi , ZHOU Shunwu , WANG Shuo , WANG Chuanhui , SUN Jihua . Diurnal Variation Characteristics of GPS-Retrieved Precipitable Water Vapor over Mid-East Xizang in Summer[J]. Plateau Meteorology, 2016 , 35(2) : 318 -328 . DOI: 10.7522/j.issn.1000-0534.2015.00007

References

[1]Bevis M,Businger S,Herring T,et al. 1992. GPS Meteorology:Remote sensing of atmospheric water vapor using the Global Positioning System[J]. J Geophys Res,97(14):15787-15801.
[2]Kou Y H,Guo Y R,Westwater E R. 1993. Assimilation of precipitable water into mesoscale numerical model[J]. Mon Wea Rev,121(4):1215-1238.
[3]Ohtani R,Naito I. 2000. Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan[J]. J Geophys Res,105(22):26917-26929.
[4]Quinn K J,Herring T A. 1996. GPS Atmospheric water vapor measurements without surface pressure sensors[J]. Eos Trans. AGU,Fall Meet. Supply,77(46):134-135.
[5]Tregoning P,Boers R,O' Brien D,et al. 1998. Accuracy of absolute precipitable water vapor estimates from GPS observations[J]. J Geophys Res,103(28):28701-28710.
[6]Wu P,Hamada J I,Mori S,et al. 2003. Diurnal variation of precipitable water over a mountainous area of Sumatra Island[J]. J Appl Meteor,42(8):1107-1115.
[7]Xu Guirong,Cui Chunguang,Li Wujie,et al. 2011. Variation of GPS precipitable water over the Qinghai-Tibet Plateau:possible teleconnection triggering rainfall over the Yangtze River Valley[J]. Terrestrial Atmospheric and Oceanic Sciences,22:195-202.
[8]Zhai P M,Robert E E. 1997. Atmospheric water vapor over China[J]. J Climate,10(10):2643-2652.
[9]Zhou Shunwu,Wu Ping,Wang Chuanhui. 2012. Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau[J]. J Geograph Sci,22(5):795-809.
[10]白爱娟,刘晓东,刘长海. 2011. 青藏高原与四川盆地夏季降水日变化的对比分析[J]. 高原气象,30(4):852-859. Bai Aijuan,Liu Xiaodong,Liu Chang hai. 2011. Contrast of diurnal variations of summer precipitation between the Tibetan Plateau and Sichuan Basin[J]. Plateau Meteor,30(4):852-859.
[11]白爱娟,刘长海,刘晓东. 2008. TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J]. 地球物理学报,51(3):704-714. Bai Aijuan,Liu Changhai,Liu Xiaodong. 2008. Diurnal variation of summer rainfall over the Tibetan Plateau and it's neighboring regions revealed by TRMM Multi-satellite Precipitation Analysis[J]. Chinese J Geophy,51(3):704-714.
[12]卞林根,陆龙骅,逯昌贵,等. 2001.1998年夏季青藏高原辐射平衡分量特征[J]. 大气科学,25(5):577-588. Bian Lingen,Lu Longhua,Lu Changgui,et al. 2001. The characteristics of radiation balance components of the Tibetan Plateau in the summer of 1998[J]. Chinese J Atmos Sci,25(5):577-588.
[13]蔡英,钱正安,吴统文,等. 2004. 青藏高原及周围地区大气可降水量的分布、变化与各地多变的降水气候[J]. 高原气象,23(1):1-10. Cai Ying,Qian Zheng'an,Wu Tongwen,et al. 2004. Distribution,changes of atmospheric precipitable water over Qingha-i Xizang Plateau and its surroundings and their changeable precipitation climate[J]. Plateau Meteor,23(1):1-10.
[14]丁裕国,江志红. 2002. 气象数据时间序列信号处理[M]. 北京:气象出版社,32-37. Ding Yuguo,Jiang Zhihong. 2002. Meteorological data time series signal processing[M]. Beijing:China Meteorological Press,32-37.
[15]海云莎,孙绩华,陈新梅. 2011.2007-2010年云南GPS观测大气可降水量特征分析[J]. 云南地理环境研究,23(2):78-84. Hai Yunsha,Sun Jihua,Chen Xinmei. 2011. The analysis of GPS-retrived PWV characteristic in Yunnan from 2007-2009[J]. Yunnan Geographic Environment Research,23(2):78-84.
[16]季国良,江灏,查树芳. 1987. 青藏高原地区有效辐射的计算及其分布特征[J]. 高原气象,6(2):141-149. Ji Guoliang,Jiang Hao,Zha Shufang. 1987. The calculation of effective radiation and its distribution characteristics in the Tibetan Plateau[J]. Plateau Meteor,6(2):141-149.
[17]李国平,黄丁发,刘碧全. 2006. 地基GPS遥感的成都地区夏季可降水量的日循环合成分析[J]. 水科学进展,17(2):160-163. Li Guoping,Huang Dingfa,Liu Biquan. 2006. Composite study of diurnal cycle of precipitable water vapor derived from ground-based GPS in Chengdu Plain during the warm season[J]. Adv Water Sci,17(2):160-163.
[18]梁丰,李成才,王迎春,等. 2003. 应用区域地基全球定位系统观测分析北京地区大气总水汽量[J]. 大气科学,27(2):236-244. Liang Feng,Li Chengcai,Wang Yingchun,et al. 2003. An analysis of atmospheric precipitable water based on regional ground-based GPS network in Beijing[J]. Chinese J Atmos Sci,27(2):236-244.
[19]梁宏,刘晶淼,陈跃. 2010a. 地基GPS遥感的祁连山区夏季可降水量日变化特征及成因分析[J]. 高原气象,29(3):726-736. Liang Hong,Liu Jingmiao,Chen Yue. 2010a. Characteristics and cause of diurnal variation of precipitable water vapor derived from ground-based GPS in Qilian mountains in summer[J]. Plateau Meteor,29(3):726-736,2010,28(3):279-284.
[20]梁宏,刘晶淼,张人禾,等. 2010b. 拉萨河谷大气水汽日变化特征[J]. 水科学进展,21(3):335-342. Liang Hong,Liu Jingmiao,Zhang Renhe,et al. 2010b. Diurnal variations of atmospheric water vapor in Lhasa river valley[J],Adv Water Sci,21(3):335-342.
[21]梁宏. 2012. 青藏高原大气水汽变化和对辐射影响的模拟[D]. 北京:中国气象科学研究院. Liang Hong. 2012. Variation of the Atmospheric Water Vapor and its Radiative Effect Simulations over the Tibetan Plateau[D]. Beijing:Chinese Academy of Meteorological Sciences.
[22]林振耀,吴祥定. 1981. 青藏高原气候区划[J]. 地理学报,36(1):22-32. Lin Zhenyao,Wu Xiangding. 1981. Climatic regionalization of the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica,36(1):22-32.
[23]刘瑞霞,徐祥德,刘玉洁. 2013. JICA综合观测与卫星数据在高原地区三维云和水汽场构建中的应用[J]. 高原气象,32(6):1589-1596. Liu Ruixia,Xu Xiangde,Liu Yujie. 2013. Application of JICA comprehensive observation and satellite data in three-dimentional cloud and humidity construction over Qinghai-Xizang Plateau[J]. Plateau Meteor,32(6):1589-1596. DOI:10.7522/j.issn. 1000-0534.2012.00154.
[24]孙绩华,吴萍,刘建宇. 2013. 云南地基GPS水汽解算方案及精度检验[J]. 南京信息工程大学学报:自然科学版,32(2):106-112. Sun Jihua,Wu Ping,Liu Jianyu. 2013. Calculation scheme and accuracy test of ground-based GPS atmospheric water vapor in Yunnan[J]. Journal of Nanjing University of Information Science and Technology:Natural Science Edition,32(2):106-112.
[25]田红瑛,田文寿,雒佳丽,等. 2014. 青藏高原地区上对流层-下平流层区域水汽分布和变化特征[J]. 高原气象,33(1):1-13. Tian Hongying,Tian Wenshou,Luo Jiali,et al. 2014. Characteristics of water vapor distribution and variation in upper troposphere and lower stratosphere over Qinghai-Xizang Plateau[J]. Plateau Meteor,33(1):1-13. DOI:10.7522/j.issn. 1000-0534.2013.00074.
[26]王可丽,江灏,赵红岩. 2005. 西风带与季风对中国西北地区的水汽输送[J]. 水科学进展,16(3):432-438. Wang Keli,Jiang Hao,Zhao Hongyan. 2005. Atmospheric water vapor transport from westerly and monsoon over the Northwest China[J]. Adv Water Sci,16(3):432-438.
[27]王同美,吴国雄,万日金. 2008. 青藏高原的热力和动力作用对亚洲季风区环流的影响[J]. 高原气象,27(1):1-9. Wang Tongmei,Wu Guoxiong,Wan Rijin. 2008. Influence of the mechanical and thermal forcing of Tibetan Plateau on the circulation of the Asian summer monsoon area[J]. Plateau Meteor,27(1):1-9.
[28]王维佳,赵兴炳. 2010. 川西高原地基GPS遥测可降水量特征[J]. 干旱气象,28(3):279-284. Wang Weijia,Zhao Xingbing. 2010. Characteristics of precipitable water from ground-based GPS measurements in western Sichuan Plateau[J]. J Arid Meteor,28(3):279-284.
[29]王小亚,朱文耀,严豪建,等. 1999. 地面GPS探测大气可降水量的初步结果[J]. 大气科学,23(5):605-612. Wang Xiaoya,Zhu Wenyao,Yan Haojian,et al. 1999. Preliminary results of precipitable water vapor monitored by ground-based GPS[J]. Chinese J Atmos Sci,23(5):605-612.
[30]魏凤英. 2007. 现代气候统计诊断与预测技术[M]. 北京:气象出版社,29-35. Wei Fengying. 2007. Statistical diagnosis and prediction technology of modern climate[M]. Beijing:China Meteorological,29-35.
[31]魏浩瀚,何秀凤. 2011. 利用区域GPS观测网探测夏季降雨中大气可降水量[J]. 河海大学学报:自然科学版,39(4):454-457. Wei Haohan,He Xiufeng. 2011. Detection of precipitable water vapor during summer rainfall using regional GPS network[J]. Journal of Hohai University:Natural Sciences,39(4):454-457.
[32]徐祥德,陶诗言,王继志,等. 2002. 青藏高原-季风水汽输送"大三角扇型"影响域特征与中国区域旱涝异常的关系[J]. 气象学报,60(3):257-267. Xu Xiangde,Tao Shiyan,Wang Jizhi,et al. 2002. The relationship between water vapor transport features of Tibetan Plateau-monsoon ‘large triangle’ affecting region and drought-flood abnormality of China[J]. Acta Meteor Sinica,60(3):257-267.
[33]杨光林,刘晶淼,毛节泰. 2002. 西藏地区水汽GPS遥感分析[J]. 气象科技,30(5):266-272. Yang Guanglin,Liu Jingmiao,Mao Jietai. 2002. Remote sensing analysis of water vapor GPS in Tibet area[J]. Meteoro Sci Technol,30(5):266-272.
[34]杨志刚,建军,洪建昌. 2014.1961-2010年西藏极端降水事件时空分布特征[J]. 高原气象,33(1):37-42. Yang Zhigang,Jian Jun,Hong Jianchang. 2014. Temporal and spatial distribution of extreme precipitation events in Tibet during 1961-2010[J]. Plateau Meteor,33(1):37-42. DOI:10.7522/j.issn. 1000-0534.2013.00147.
[35]翟盘茂,周琴芳. 1997. 中国大气水分气候变化研究[J]. 应用气象学报,8(3):342-351. Zhai Panmao,Zhou Qinfang. 1997. A study of climate changes of atmospheric water vapor in China[J]. J Appl Meteor Sci,8(3):342-351.
[36]张人禾,徐祥德. 2012. 青藏高原及东缘新一代大气综合探测系统应用平台-中日合作JICA项目[J]. 中国工程科学,15(9):102-112. Zhang Renhe,Xu Xiangde. 2012. An applying platform for the new generation of the comprehensive atmospheric observing system over the Tibetan Plateau and its eastern region-a China-Japan cooperative JICA Project[J]. Engineering Sciences,15(9):102-112.
[37]周顺武,王传辉,杜军,等. 2010. 青藏高原汛期降水的时空分布特征[J]. 气候与环境研究,16(6):723-732. Zhou Shunwu,Wang Chuanhui,Du Jun,et al. 2010. Characteristics of spatial and temporal distribution of precipitation in flood season over the Tibetan Plateau[J]. Climatic Environ Res,16(6):723-732.
[38]周长艳,蒋兴文,李跃清,等. 2009. 高原东部及邻近地区空中水汽资源的气候变化特征[J]. 高原气象,28(1):55-63. Zhou Changyan,Jiang Xingwen,Li Yueqing,et al. 2009. Features of climate change of water vapor resources over eastern region of the Tibetan Plateau and its surroundings[J]. Plateau Meteor,28(1):55-63.
[39]卓嘎,边巴次仁,杨秀海,等. 2013. 近30年西藏地区大气可降水量的时空变化特征[J]. 高原气象,32(1):23-30. Luo Bu,Zhuo Ga,Yang Xiuhai. 2013. The atmospheric characteristics in the early period of East Asian monsoon in Gaize,Tibet[J]. Plateau Meteor,32(1):23-30. DOI:10.7522/j.issn. 1000-0534.2012.00003.
Outlines

/