Applicability Analysis of MERRA Surface Air Temperature over the Qinghai-Xizang Plateau

  • CHU Duo ,
  • YANG Yong ,
  • LUOBU Jiancan ,
  • BIANBA Ciren
Expand
  • Lhasa Campus of Institute of Plateau Meteorology, China Meteorological Administration, Lhasa 850000, China;2. Tibet Institute of Plateau Atmospheric and Environmental Sciences, Lhasa 850000, China;3. Tibet Climate Center, Lhasa 850000, China;4. Tibet Weather Observatory, Lhasa 850000, China

Received date: 2014-08-15

  Online published: 2016-04-28

Abstract

Atmospheric reanalyses integrate a variety of observing systems with numerical models to produce a temporally and spatially consistent synthesis of data for weather and climate variability studies. Products provided by reanalyises are the objectively analyzed fields over the globe, including regions with minimal observations, and also for fields that are rarely or never observed. In order to evaluate the applicability of MERRA products over the Qinghai-Xizang Plateau (QXP) MERRA reanalysis surface air temperature product T2m with surface observation air temperature from 60 meteorological stations over 30 years from 1981 to 2010 were compared for the seasonal variations and long tern trends of temperature over the QXP. Main results are as follows:(1) MERRA T2m shows very high correlation with observation temperature with a correlation coefficient of 0.76 on average, in which 96.7% of the total stations is significant at the 95% level and 85.0% of the total stations is significant at the 99.9% level. The correlation in winter is better than that in summer. The relatively low correlation coefficients are found at higher latitude regions of northern QXP. (2) MERRA T2m is lower than the in-situ observations in most of stations on the QXP with lower 3.2℃ on average, and is more close to observation temperature in relatively flat terrain and homogeneous surface features in interior and northern region of the QXP while higher bias is found in complex terrain and surface features in the southeastern and southern mountain and river valleys where land-atmosphere interactions strongly affect the physical parameterizations in the numerical models and complex terrain and heterogeneous surface features as well as persistent cloud cover may contribute to these differences. MERRA T2m standard deviation is smaller than observed as well. However, for long term trends the increase in observation temperature (0.525℃·(10a)-1) is well represented by MERRA (0.342℃·(10a)-1) though MERRA underestimates this increasing rate. (3) According to analysis using observation data, it is indicated that the annual mean surface air temperature on the QXP ranges from -5.1℃ to 14.8℃, with 3.6℃ on average. Over the last 30 years from 1981 to 2010, QXP has experienced obvious increase in temperature with 0.525℃·(10a)-1), which obviously higher than 0.29℃·(10a)-1)of China and 0.13℃·(10a)-1) of global warming trends. At seasonal levels, the highest temperature increase occurs in winter with 0.724℃·(10a)-1), followed by spring(0.523℃·(10a)-1) and autumn(0.467℃·(10a)-1), and the lowest increase in temperature is found in summer but it still reaches to 0.389℃·(10a)-1). These 30-year trends of seasonal temperature are well represented by MERRA T2m product although increasing rates are to some extent underestimated. (4) Based on this work and previous comparison study for surface air temperature from NCEP/NCAR, NCEP/DOE and ERA-Interim over the QXP, MERRA T2m has higher correlation with observation compared to these reanalysis products, which means MERRA surface air temperature has some advantage over the QXP compared to other reanalysis data and is one of the better ways to compensate for sparse ground observation network, to implement climate change, energy balance and water cycles related study, and to use initialization fields for regional climate models etc.

Cite this article

CHU Duo , YANG Yong , LUOBU Jiancan , BIANBA Ciren . Applicability Analysis of MERRA Surface Air Temperature over the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016 , 35(2) : 337 -350 . DOI: 10.7522/j.issn.1000-0534.2015.00018

References

[1]Bacmeister J T,Suarez M J,Robertson F R. 2006. Rain reevaporation,boundary layer-convection interactions,and Pacific rainfall patterns in an AGCM[J]. J Atmos Sci,63(12):3383-3403.
[2]Bengtsson L,Shukla J. 1988. Integration of space and in situ observations to study global climate change[J]. Bull Amer Meteor Soc,69(10):1130-1143.
[3]Bosilovich M G. 2013. Regional climate and variability of NASA MERRA and recent reanalyses:US summertime precipitation and temperature[J]. J Appl Meteor Climatol,52(8):1939-1951.
[4]Chou M D,Suarez M J,Liang X Z,et al. 2001. A thermal infrared radiation parameterization for atmospheric studies[R]. NASA Technical Report Series on Global Modeling and Data Assimilation,NASA/TM-2001-104606,19,56.
[5]Chou M D,Suarez M J. 1999. A solar radiation parameterization for atmospheric studies[R]. NASA Technical Report Series on Global Modeling and Data Assimilation,NASA/TM-1999-104606,15,40.
[6]Compo G P,Whitaker J S,Sardeshmukh P D,et al. 2011.The twentieth century reanalysis project[J]. Quart J Roy Meteor Soc,137(654):1-28. DOI:10.1002/qj. 776.
[7]Dee D,Uppala S M,Simmons A J,et al. 2011. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc,137(656):553-597. DOI:10.1002/qj. 828.
[8]GES DISC. 1981-2010. Modern-era Retrospective Analysis for Research and Applications[OL]. http://gmao.gsfc.nasa.gov/research/merra/file_specifications.php.2014.
[9]Gibson J K,Kallberg P,Uppala S. et al. 1997. ECMWF reanalysis project report series No.1:ERA description[M]. Geneva:European Center for Medium-Range Weather Forecasting,1-20.
[10]Kalnay E,Kanamitsu M,Kistler R,et al. 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc,77(3):437-471.
[11]Kanamitsu M,Ebisuzaki W,Woollen J,et al. 2002. NCEP/DOE AMIP-ⅡReanalysis(R-2)[J]. Bull Amer Meteor Soc,83(11):1631-1643.
[12]Kistler R,kalnay E,Collins W,et al. 2001. The NCEP/NCAR 50-year reanalysis:Monthly means CD-ROM and documentation[J]. Bull Amer Meteor Soc,82(2):247-267.
[13]Kobayashi S,Ota Y,Harada Y,et al. 2015. The JRA-55 reanalysis:General specifications and basic characteristics[J]. J Meteor Soc Japan,93(1):5-18. DOI:10.2151/jmsj. 2015-001.
[14]Lin S J. 2004. A ‘vertically Lagrangian’ finite-volume dynamical core for global models[J]. Mon Wea Rev,132(10):2293-2307.
[15]Lock A P,Brown A R,Bush M R,et al. 2000. A new boundary layer mixing scheme. Part I:Scheme description and single-column model tests[J]. Mon Wea Rev,138(9):3187-3199.
[16]Louis J,Tiedtke M,Geleyn J. 1982. A short history of the PBL parameterization at ECMWF. Proc. ECMWF workshop on planetary boundary layer parameterization[C]//Reading. United Kingdom,ECMWF,59-80.
[17]Onogi K,Tsutsui J,Koide H,et al. 2007. The JRA-25 reanalysis[J]. J Meteor Soc Japan,85(3):369-432.
[18]Rienecker M M,Suarez M J,Gelaro R,et al. 2011. MERRA:NASA's Modern-Era retrospective analysis for research and applications[J]. J Climate,24(14):3624-3648. DOI:10.1175/JCLI-D-11-00015.1.
[19]Saha S,Moorthi S,Pan H,et al. 2010. The NCEP climate forecast system reanalysis[J]. Bull Amer Meteor Soc,91(18):1015-1057. DOI:10.1175/2010BAMS3001.1.
[20]Trenberth K E,Olson J G. 1988. An evaluation and intercomparison of global analyses from the National Meteorological Center and the European Centre for Medium Range Weather Forecasts[J]. Bull Amer Meteor Soc,69(9):1047-1057.
[21]Uppala S M,Kllberg P W,Simmons A J,et al. 2005. The ERA-40 reanalysis[J]. Quart J Roy Meteor Soc,131(612):2961-3012.
[22]Vose R S,Applequist S,Menne M J,et al. 2012. An intercomparison of temperature trends in the U. S. historical climatology network and recent atmospheric reanalyses[J]. Geophys Res Lett,39(10):L10703. DOI:10.1029/2012GL051387.
[23]Xie Aihong,Ren Jiawen,Qin Xiang,et al. 2007. Reliability of NCEP/NCAR reanalysis data in the Himalayas/Tibetan Plateau[J]. J Geograph Sci,17(4):421-430.
[24]钞振华. 2011. 三种再分析气温资料在中国西部地区的可信度评价[J]. 大气科学学报,34(2):162-169. Chao Zhenhua. 2011. The reliability evaluation of three types of air temperature reanalysis data in West China[J]. Trans Atmos Sci,34(2):162-169.
[25]何冬燕,田红,邓伟涛. 2013. 三种再分析地表温度资料在青藏高原区域的适用性分析[J]. 大气科学学报,36(4):458-465. He Dongyan,Tian Hong,Deng Weitao. 2013. Applicability analysis of three reanalysis surface temperature data over the Tibetan Plateau[J]. Trans Atmos Sci,36(4):458-465.
[26]胡增运,倪勇勇,邵华,等. 2013. CFSR、ERA-Interim和MERRA降水资料在中亚地区的适用性[J]. 干旱区地理,36(4):700-708. Hu Zengyun,Ni Yongyong,Shao Hua,et al. 2013. Applicability study of CFSR,ERA-Interim and MERRA precipitation estimates in central Asia[J]. Arid Land Geography,36(4):700-708.
[27]李川,张廷军,陈静. 2004. 近40年青藏高原地区的气候变化-NCEP和ECMWF地面气温及降水再分析和实测资料对比分析[J]. 高原气象,23(增刊1):97-103. Li Chuan,Zhang Tinjun,Chen Jing. 2004. Climatic change of Qinghai-Xizang Plateau region in recent 40-year reanalysis and surface observation data-contrast of observational data and NCEP,ECMWF surface air temperature and precipitation[J]. Plateau Meteor,23(Supp1):97-103.
[28]李瑞青,吕世华,韩博,等. 2012. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象,31(6):1488-1502. Li Ruiqing,Lü Shihua,Han Bo,et al. 2012. Preliminary comparison and analyses of air temperature at 2 m height between three reanalysis data-sets and observation in the east of Qinghai-Xiang Plateau[J]. Plateau Meteor,31(6):1488-1502.
[29]彭继达,程兴宏,孙治安,等. 2014. 两种不同初始场对太阳辐射模拟效果的影响[J]. 高原气象,33(5):1352-1362. Peng Jida,Cheng Xinghong,Sun Zhian,et al. 2014. Impact of differences between the NCEP and ECMWF reanalysis data on solar radiation simulation[J]. Plateau Meteor,33(5):1352-1362. DOI:10.7522/j.issn. 1000-0534.2013.00098.
[30]秦艳慧,吴通华,李韧,等. 2015. ERA-Interim地表温度资料在青藏高原多年冻土区的适用性[J]. 高原气象,34(3):666-675. Qin Yanhui,Wu Tonghua,Li Ren,et al. 2015. Application of ERA product of land surface temperature in permafrost regions of Qinghai-Xizang Plateau[J]. Plateau Meteor,34(3):666-675. DOI:10.7522/j.issn. 1000-0534.2014.00151.
[31]孙玉婷,高庆九,闵锦忠. 2013. 再分析温度资料与西藏地区冬夏季观测气温的比较[J]. 高原气象,32(4):909-920. Sun Yuting,Gao Qingjiu,Min Jinzhong. 2013. Comparison of reanalysis data and observation about summer/winter surface air temperature in Tibet[J]. Plateau Meteor,32(4):909-920. DOI:10.7522/j.issn. 1000-0534.2012.00087.
[32]田红瑛,田文寿,雒佳丽,等. 2014. 青藏高原地区上对流层-下平流层区域水汽分布和变化特征[J]. 高原气象,33(1):1-13. Tian Hongying,Tian Wenshou,Luo Jiali,et al. 2014. Characteristics of water vapor distribution and variation in upper troposphere and lower stratosphere over Qinghai-Xizang Plateau[J]. Plateau Meteor,33(1):1-13. DOI:10.7522/j.issn. 1000-0534.2013.00074.
[33]王青霞,吕世华,鲍艳,等. 2014. 青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析[J]. 高原气象,33(2):301-312. Wang Qingxia,Lü Shihua,Bao Yan,et al. 2014. Characteristics of vegetation change and its relationship with climate factors in different time-scales on Qinghai-Xizang Plateau[J]. Plateau Meteor,33(2):301-312. DOI:10.7522/j.issn. 1000-0534.2014.00002.
[34]王学佳,杨梅学,万国宁. 2013. 近60年青藏高原地区地面感热通量的时空演变特征[J]. 高原气象,32(6):1557-1567. Wang Xuejia,Yang Meixue,Wan Guoning. 2013. Temporal-spatial distribution and evolution of surface sensible heat flux over Qinghai-Xizang Plateau during last 60 years[J]. Plateau Meteor,32(6):1557-1567. DOI:10.7522/j.issn. 1000-0534.2012.00151.
[35]魏丽,李栋梁. 2003. NCEP/NCAR 再分析资料在青藏铁路沿线气候变化研究中的适用性[J]. 高原气象,22(5):488-494. Wei Li,Li Dongliang. 2003. Reliability of NCEP/NCAR reanalysis data in climatic change along Qinghai-Xizang railway[J]. Plateau Meteor,22(5):488-494.
[36]徐影,丁一汇,赵宗慈. 2001,美国NCEP/NCAR 近50年全球再分析资料在我国气候变化研究中可信度的初步分析[J]. 应用气象学报,12(3):337-347. Xu Ying,Ding Yihui,Zhao Zongci. 2001. Confidence analysis of NCEP/NCAR 50-year global reanalyzed data in climate change research in China[J]. J Appl Meteor,12 (3):337-347.
[37]姚秀萍,孙建元,康岚,等. 2014. 高原切变线研究的若干进展[J]. 高原气象. 33(1):294-300. Yao Xiuping,Sun Jianyan,Kang Lan,et al. 2014. Advances on research of shear convergence line over Qinghai-Xizang Plateau[J]. Plateau Meteor,33(1):294-300. DOI:10.7522/j.issn. 1000-0534.2013.00164.
[38]张镱锂,李炳元,郑度. 2002. 论青藏高原范围与面积[J]. 地理研究,21(1):1-8. Zhang Yili,Li Bingyuan,Zheng Du. 2002. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geograph Res,21(1):1-8.
[39]赵天保,艾丽坤,冯锦明. 2004. NCEP再分析资料和中国站点观测资料的分析与比较[J]. 气候与环境研究,9(2):278-294. Zhao Tianbao,Ai likun,Feng Jinming. 2004. An intercomparison between NCEP reanalysis and observed data over China[J]. Climatic Environ Res,9(2):278-294.
[40]赵天保,符淙斌,柯宗建,等. 2010. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展,25(3):242-254. Zhao Tianbao,Fu Congbin,Ke Zongjian,et al. 2010. Global atmosphere reanalysis datasets:Current status and recent advances[J]. Adv Earth Sci,25(3):242-254.
Outlines

/