Impact of Different Covariance Inflation Schemes of ETKF on WRFDA Hybrid Assimilation and Forecast

  • WANG Yuanbing ,
  • CHEN Yaodeng ,
  • MIN Jinzhong ,
  • GAO Yufang ,
  • HUANG Xiangyu ,
  • WANG Hongli ,
  • XU Dongmei ,
  • LIU Jianyu
Expand
  • Key Laboratory of Meteorological Disaster of Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. Meteorological Service Singapore, Centre for Climate Research Singapore, Singapore 537054, Singapore;3. Cooperative Institute for Research in the Atmosphere, Colorado State Univeisity, Fort Collins CO 80553, USA;4. Global Systems Division, NOAA/Earth System Research Laboratory, Boulder CO 80302, USA

Received date: 2014-06-11

  Online published: 2016-04-28

Abstract

To study the impact of different ETKF(Ensemble Transform Kalman Filter)covariance inflation schemes on Hybrid data assimilation and forecast, five experiments are conducted over most China area from 10 to 20 July 2011. These five experiments include four experiments with different covariance inflation schemes and one experiment without any covariance inflation schemes. The results show that:All the experiments with covariance inflation perform better than experiment without covariance inflation. The inflation sheme which averages the inflation factors performs worst; The performance of the other three experiments with covariance inflation shows similar results, but differences still exsit:For wind, the scheme which uses projection factor in ensemble subspace and the scheme which uses averaged innovation value show the better results than the other two. For temperature, humidity and preciptation, the sheme which uses the ratio of the spread between previous and current cycle and the scheme uses averaged innovation value perform the best.

Cite this article

WANG Yuanbing , CHEN Yaodeng , MIN Jinzhong , GAO Yufang , HUANG Xiangyu , WANG Hongli , XU Dongmei , LIU Jianyu . Impact of Different Covariance Inflation Schemes of ETKF on WRFDA Hybrid Assimilation and Forecast[J]. Plateau Meteorology, 2016 , 35(2) : 397 -405 . DOI: 10.7522/j.issn.1000-0534.2014.00147

References

[1]Anderson J L. 2001. An ensemble adjustment Kalman filter for data assimilation[J]. Mon Wea Rev,129(12):2884-2903.
[2]Barker D,Huang X Y,Liu Z,et al. 2012. The weather research and forecasting model's community variational/ensemble data assimilation system:WRFDA[J]. Bull Amer Meteor Soc,93(6):831-843.
[3]Barker D. 2005. Southern high-latitude ensemble data assimilation in the Antarctic mesoscale prediction system[J]. Mon Wea Rev,133(12):3431-3449.
[4]Bishop C H,Etherton B J,Majumdar S J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I:Theoretical aspects[J]. Mon Wea Rev,129(3):420-436.
[5]Bowler N E,Arribas A,Mylne K R,et al. 2008. The MOGREPS short-range ensemble prediction system[J]. Quart J Roy Meteor Soc,134(632):703-722.
[6]Hamill T M,Snyder C. 2000. A hybrid ensemble Kalman filter-3D variational analysis scheme[J]. Mon Wea Rev,128(8):2905-2919.
[7]Li H,Kalnay E,Miyoshi T. 2009. Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter[J]. Quart J Roy Meteor Soc,135(639):523-533.
[8]Meng Z,Zhang F. 2011. Limited-area ensemble-based data assimilation[J]. Mon Wea Rev,139(7):2025-2045.
[9]Mizzi A P. 2011. A regional hybrid GSI/ETKF data assimilation scheme for the WRF/ARW model[C]//AGU:Fall Meeting Abstracts,1:5.
[10]Parrish D F,Derber J C. 1992. The National Meteorological Center's spectral statistical-interpolation analysis system[J]. Mon Wea Rev,120(8):1747-1763.
[11]Roberts N M,Lean H W. 2008. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events[J]. Mon Wea Rev,136(1):78-97.
[12]Wang X,Barker D M,Snyder C,et al. 2008. A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I:Observing system simulation experiment[J]. Mon Wea Rev,136(12):5116-5131.
[13]Wang X,Bishop C H. 2003. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes[J]. J Atmos Sci,60(9):1140-1158.
[14]Wang X,Hamill T M,Whitaker J S,et al. 2007. A comparison of hybrid ensemble transform kalman filter-optimum interpolation and ensemble square root filter analysis schemes[J]. Mon Wea Rev,135(3):1055-1076.
[15]Whitaker J S,Hamill T M. 2002. Ensemble data assimilation without perturbed observations[J]. Mon Wea Rev,130(7):1913-1924.
[16]Zhang F,Zhang M,Poterjoy J. 2013. E3DVar:Coupling an ensemble kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar[J]. Mon Wea Rev,141(3):900-917.
[17]段华,潘晓滨,臧增亮,等. 2015. 基于GSI同化系统的卫星辐射率资料的同化试验[J]. 干旱气象,33(6):895-901. Duan Hua,Pan Xiaobin,Zang Zengling,et al. 2015. Analysis on assimilation experiment of AMSU-A radiance based on GSI system[J]. J Arid Meteor,33(6):895-901.
[18]龚建东,邱崇践,王强,等. 1999. 区域四维变分资料同化的数值试验[J]. 气象学报,57(2):131-142. Gongjian dong,Qiu Chongjian,Wang Qiang,et al. 1999. Experiment in area four dimensional variational data assimilation[J]. Acta Meteor Sinica,57(2):131-142.
[19]韩月琪,彭跃华,王云峰,等. 2010. 过去状态估计之集合Kalman滤波扩充状态变量法研究[J]. 高原气象,29(4):968-974. Han Yueqi,Peng Yuehua,Wang Yunfeng,et al. 2010. Research of extended state variable method in ensemble kalman filter for estimating past state variables[J]. Plateau Meteor,29(4):968-974.
[20]李崇银,黄红艳,陈超辉,等. 2013. 联合资料同化理论及其研究进展[J]. 测绘科学技术学报,30(4):343-348. Li Chongyin,Huang Hongyan,Chen Chaohui,et al. 2013. The theory and research progress of hybrid data assimilation[J]. Journal of Geomatics Science and Technology,30(4):343-348.
[21]李虎超,邵爱梅,何邓新,等. 2015. BP神经网络在估算模式非系统性预报误差中的应用[J]. 高原气象,34(6):1751-1757. Li Huchao,Shao Aimei,He Dengxin,et al. 2015. Application of back-propagation neural network in predicting non-systematic error in numerical prediction model[J]. Plateau Meteor,34(6):1751-1757. DOI:10.7522/j.issn. 1000-0534.2014.00120.
[22]刘梅,俞剑蔚,韩桂荣,等. 2014.2011年7月中旬江淮流域持续性强降水的环流特征分析[J]. 热带气象学报,30(1):153-160. Liu Mei,Yu Jianwei,Han Guirong,et al. 2014. Analysis of circulation feature of a continuous heavy rain in Yangtze-Huaihe Basin during mid-July in 2011[J]. J Trop Meteor,30(1):153-160.
[23]马旭林,薛纪善,陆维松. 2008. GRAPES全球集合预报的集合卡尔曼变换初始扰动方案初步研究[J]. 气象学报,66(4):526-536. Ma Xulin,Xue Jishan,Lu Weisong. 2008. Preliminary study on ensemble transform kalman filter-based initial perturbation scheme in GRAPES global ensemble prediction[J]. Acta Meteor Sinica,66(4):526-536.
[24]邱晓滨,邱崇践. 2009. 混合误差协方差用于集合平方根滤波同化的试验[J]. 高原气象,28(6):1400-1407. Qiu Xiaobin,Qiu Chongjian. 2009. The suitability test of ensemble square root filter with Hybrid background error covariance[J]. Plateau Meteor,28(6):1399-1407.
[25]邵爱梅,邱晓滨,邱崇践. 2011. 使用混合样本的集合四维变分同化试验研究[J]. 高原气象,30(3):583-593. Shao Aimei,Qiu Xiaobin,Qiu Chongjian. 2011. Ensemble-based four-dimensional variational assimilation using Hybrid samples[J]. Plateau Meteor,30(3):583-593.
[26]沈艳,潘旸,宇婧婧,等. 2013. 中国区域小时降水量融合产品的质量评估[J]. 大气科学学报,36(1):37-46. Shen Yan,Pan Yang,Yu Jingjing,et al. 2013. Quality assessment of hourly merged precipitation product over China[J]. Transactions Atmos Sci,36(1):37-46.
[27]王晓峰,王平,张蕾,等. 2015. 上海"7·31"局地强对流快速更新同化数值模拟研究[J]. 高原气象,34(1):124-136. Wang Xiaofeng,Wang Ping,Zhang Lei,et al. Numerical simulation of ‘7·31’ severe convection event in Shanghai using rapid refresh technique[J]. Plateau Meteor,34(2):124-136. DOI:10.7522/j.issn. 1000-0534.2013.00202.
[28]王叶红,赖安伟,林春泽,等. 2013. 基于GRAPES-MESO模式的非静力三维变分同化方案性能分析[J]. 高原气象,32(3):689-706. Wang Yehong,Lai Anwei,Lin Chunze,et al. 2013. Evaluation on nonhydrostatic three-dimensional variational data assimilation scheme of GRAPES-MESO model[J]. Plateau Meteor,32(3):689-706. DOI:10.7522/j.issn. 1000-0534.2012.00065.
[29]文小航,吕世华,董文杰,等. 2014. 西北干旱区绿洲-戈壁资料同化数据集的建立与分析[J]. 高原气象,33(1):66-79. Wen Xiaohang,Lü Shihua,Dong Wenjie,et al. 2014. Establishment and analysis of assimilation dataset of oasis-gobi system over an arid region in Northwestern China[J]. Plateau Meteor,33(1):66-79. DOI:10.7522/j.issn. 1000-0534.2013.00073.
[30]熊春晖,张立凤,关吉平,等. 2013. 集合-变分数据同化方法的发展与应用[J]. 地球科学进展,28(6):648-656. Xiong Chunhui,Zhang Lifeng,Guan Jiping,et al. 2013. Development and application of ensemble-variational data assimilation methods[J]. Adv Earth Sci,28(6):648-656.
[31]许小永,刘黎平,郑国光. 2006. 集合卡尔曼滤波同化多普勒雷达资料的数值试验[J]. 大气科学,30(4):712-728. Xu Xiaoyong,Liu Liping,Zheng Guoguang. 2006. Numerical experiment of assimilation of doppler radar data with an ensemble kalman filter[J]. Chinese J Atmos Sci,30(4):712-728.
[32]张华,薛纪善,庄世宇,等. 2004. GRAPeS三维变分同化系统的理想试验[J]. 气象学报,62(1):31-41. Zhang Hua,Xue Jishan,Zhuang Shiyu,et al. 2004. Idea experiments of grapes three-dimensional variational data assimilation system[J]. Acta Meteor Sinica,62(1):31-41.
Outlines

/