Impacts of Freeze/Thaw Processes on Land Surface Energy Fluxes in the Permafrost Region of Qinghai-Xizang Plateau

  • GE Jun ,
  • YU Ye ,
  • LI Zhenchao ,
  • XIE Jin ,
  • LIU Chuan ,
  • ZAN Beilei
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Pingliang Land Surface Process & Severe Weather Research Station, Chinese Academy of Sciences, Pingliang 744015, China

Received date: 2015-09-23

  Online published: 2016-06-28

Abstract

Permafrost is ubiquitous on the Qinghai-Xizang Plateau.Soil freezing/thaw processes change the surface condition,which significantly influences the material and energy exchange between land and atmosphere.Observational data of land surface processes from the National Basic Research Program of China‘The response of desertification over Tibet Plateau to global changes'at Beiluhe during 2014-2015 were used in this paper.The permafrost is divided into four stages based on the daily maximum and minimum soil temperature at 5 cm depth,i.e.the thawing stage,the compLEtely thawed stage,the freezing stage and the compLEtely frozen stage.Characteristics of the seasonal and diurnal variations of surface sensibLE heat flux(Hs),latent heat flux(LE), ground soil heat flux(G0)and Bowen ratio at different freeze/thaw stages are analyzed and the impacts of freeze/ thaw processes on land surface energy fluxes and energy partitioning are investigated.The results show that: the transition of soil freeze/thaw stages has remarkabLE effect on the seasonal variations of Bowen ratio and G0.Bowen ratio decreases and G0 changes from positive to negative at the beginning of the compLEtely thawed stage and conversely when the soil starts to freeze.The impact of freezing process on the trend of Hs and LE is not obvious but Bowen ratio increases significantly.Thawing process LEads to the reduction in Hs and increase in LE,which makes Bowen ratio decrease obviously.The diurnal variation of Hs is similar during different stages.The diurnal variation of LE is related to the near surface soil water content and its diurnal variation.Due to weak diurnal variation, the higher soil water content LEads to larger LE during compLEtely frozen and thawed stages.LE is constrained during the freezing and thawing stage by the combined effects of the large diurnal variation of soil water content and the out-of-phase changes of soil water content and Rnet.Influenced by freeze/thaw processes,the diurnal variation of G0 is weak during the freezing stage.

Cite this article

GE Jun , YU Ye , LI Zhenchao , XIE Jin , LIU Chuan , ZAN Beilei . Impacts of Freeze/Thaw Processes on Land Surface Energy Fluxes in the Permafrost Region of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016 , 35(3) : 608 -620 . DOI: 10.7522/j.issn.1000-0534.2016.00032

References

[1]Beyrich F,Foken T,Herzog H J.2002.Editorial:The LITFASS-98 experiment[J].Theor Appl Climatol,73(1):1-2.
[2]Cosby B J,Hornberger G M,Clapp R B,et al.1984.A statistical exploration of the relationship of moisture characteristics to the physical properties of soils[J].Water Resource,20 (6):682-690.
[3]Falge E,Baldocchi D,Olson R,et al.2001.Gap filling strategies for defensible annual sums of net ecosystem exchange[J].Agriculture and Forest Meteorology,107(1):43-69.
[4]Foken T.1993.Study of the energy exchange processes over different types of surfaces during TARTEX-90'[M].Offenbach am Main,Deutscher Wetterdienst,Forschung und Entwicklung,Arbeitsergebnisse.
[5]Foken T.1998.Ergebnisse des LINEX-97/1 Experimentes[M].Offenbach am Main,Deutscher Wetterdienst,Forschung und Entwicklung,Arbeitsergebnisse.
[6]Foken T.2008.The energy balance closure problem:An overview[J].Ecological Applications,18(6):1351-1367.
[7]Gu L L,Yao J M,Hu Z Y,et al.2015.Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J].Atmos Res,153:553-564.
[8]Guo D L,Yang M X,Wang H J.2011a.Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau[J].Environmental Earth Sciences,63(1):97-107.
[9]Guo D L,Yang M X,Wang H J.2011b.Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J].Hydrological Processes,25(16):2531-2541.
[10]Heusinkveld B G,Jacobs A F G,Holtslag A A M,et al.2004.Surface energy balance closure in an arid region:role of soil heat flux[J].Agriculture and Forest Meteorology,122(1-2):21-37.
[11]Kaimal J C,Finnigan J J.1994.Atmospheric boundry layer flows: Their structure and measurement[M].New York:Oxford University Press.
[12]Li Z Q,Yu G R,Wen X F,et al.2005.Energy balance closure at China FLUX sites[J].Science in China,Series D:Earth Science,48(1):51-62.
[13]Moore C J.1986.Frequency response corrections for eddy correlation system[J].Bound-Layer Meteor,37:17-35.
[14]Muller S W.1947.Permafrost or permanently frozen ground and related engineering problems[M].Frozen Soils,38(4):686-687.
[15]Osterkamp T E.1987.Freezing and thawing of soils and permafrost containing unfrozen water or brine[J].Water Resour Res,23 (12):2279-2285.
[16]Qiu J.2008.The third pole[J].Nature,454(7203):393-396.
[17]Schotanus P,Nieuwstadt F T M,DeBruin H A R.1983.Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations[J].Bound-Layer Meteor,26:81-93.
[18]Tanaka K,Ishikawa H,Hayashi T,et al.2001.Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data[J].J Meteor Soc Japan,79(1B):505-517.
[19]Webb E K,Pearman G I,Leuning R.1980.Correction of the flux measurements for density effects due to heat and water vapour transfer[J].Quart J Roy Meteor Soc,106:85-100.
[20]Yang M X,Yao T D,Gou X H,et al.2007.Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau[J].Chinese Science Bulletin,52(1):136-139.
[21]Yang M X,Yao T D,Gou X H,et al.2003.The soil moisture distribution,thawing–freezing processes and their effects on seasonal transition on the Qinghai-Xizang (Tibetan) Plateau[J].Journal of Asian Earth Science,21,457-465.
[22]Yang M X,Nelson F E,Shiklomanov N I,et al.2010.Permafrost degradation and its environmental effects on the Tibetan Plateau:A review of recent research[J].Earth-Science Reviews,103(1-2):31-44.
[23]Yao J M,Zhao L,Ding Y J,et al.2008.The surface energy budget and evapotranspiration in the Tanggula region on the Tibetan Plateau[J].Cold Regions Science and Technology,52(3):326-340.
[24]Yao J M,Zhao L,Gu L L,et al.2011.The surface energy budget in the permafrost region of the Tibetan Plateau[J].Atmos Res,102 (4):394-407.
[25]陈渤黎.2013.青藏高原土壤冻融过程陆面能水特征及区域气候效应研究[D].兰州:中国科学院寒区旱区环境与工程研究所.Chen Boli.2013.A study of land surface energy and water in soil freezing and thawing process and impact on regional climate of the Qinghai-Xizang Plateau[D].Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences.
[26]陈渤黎,罗斯琼,吕世华,等.2014.黄河源区若尔盖站冻融期土壤温、湿度的模拟与改进[J].高原气象,33(2):337-345.Chen Boli,Luo Siqiong,Lü Shihua,et al.2014.Simulation and improvement of soil temperature and moisture at zoige station in source region of the yellow river during freezing and thawing[J].Plateau Meteor,33(2):337-345.DOI:10.7522/j.issn.1000-0534.2013.00085.
[27]李宏宇,张强,赵建华,等.2010.陇中黄土高原地表能量不平衡特征及其影响机制研究[J].高原气象,29(5):1153-1162.Li Hongyu,Zhang Qiang,Zhao Jianhua,et al.2010.Research on characteristic of surface energy imbalance in Loess Plateau in middle part of Gansu and its effect mechanism[J].Plateau Meteor,29(5):1153-1162.
[28]李述训,南卓铜,赵林.2002.冻融作用对地气系统能量交换的分析[J].冰川冻土,24(5):506-511.Li Shuxun,Nan Zhuotong,Zhao Lin.2002.Impact of soil freezing and thawing process on thermal exchange between atmosphere and ground surface[J].J Glaciology Geocryology,24(5):506-511.
[29]李震坤,武炳义,朱伟军,等.2011a.CLM3.0模式中冻土过程参数化的改进及模拟实验[J].气候与环境研究,16(2):137-148.Li Zhenkun,Wu Bingyi,Zhu Weijun,et al.2011a.Improvement and validation of the frozen soil parameterization scheme used in NCAR CLM3.0 model[J].Climatic Environ Res,16(2):137-148.
[30]李震坤,朱伟军,武炳义.2011b.大气环流模式CAM中土壤冻融过程改进对东亚气候的模拟影响[J].大气科学,35(4):683-693.Li Zhenkun,Zhu Weijun,Wu Bingyi.2011b.Impact of improved soil freezing process on climate in east Asia using NCAR CAM model[J].Chinese J.Atmos Sci,35(4):683-693.
[31]刘火霖,胡泽勇,杨耀先,等.2015.青藏高原那曲地区冻融过程的数值模拟研究[J].高原气象,34(3):676-683.Liu Huolin,Hu Zeyong,Yang Yaoxian,et al.2015.Simulation of the freezing-thawing processes at Nagqu area over Qinghai-Xizang Plateau[J].Plateau Meteor,34(3):676-683.DOI:10.7522/j.issn.1000-0534.2015.00021.
[32]罗斯琼,吕世华,张宇,等.2009.青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J].地球物理学报,52(4):919-928.Luo Siqiong,Lü Shihua,Zhang Yu,et al.2009.Soil thermal conductivity parameterization establishiment and application in numerical model of central Tibetan Plateau[J].Chinese Journal of Geophysics,52(4):919-928.
[33]任继周.1998.草业科学研究方法[M].北京:中国农业出版社.Ren Jizhou.1998.Pratacultural science research model[M].Beijing:China Agriculture Press.
[34]尚大成,王澄海.2006.高原地表过程中冻融过程在东亚夏季风中的作用[J].干旱气象,24(3):19-22.Shang Dacheng,Wang Chenghai.The effect of the frozen-thaw process in Tibetan Plateau on summer monsoon over eastern Asia[J].J Arid Meteor,24(3):19-22.
[35]尚伦宇,吕世华,张宇,等.2010.青藏高原东部土壤冻融过程中地表粗糙度的确定[J].高原气象,29(1):17-22.Shang Lunyu,Lv Shihua,Zhang Yu,et al.2010.Determination of surface roughness length during soil freezing and thawing season over eastern Qinghai-Xizang Plateau[J].Plateau Meteor,29 (1):17-22.
[36]孙淑芬.2005.陆面过程的物理、生化机理和参数化模型[M].北京:气象出版社.Sun Shufen.Physical,biochemical mechanism and parametric model of land surface process[M].Beijing:China Meteorological Press.
[37]王澄海,董文杰,韦志刚.2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报,46(3):309-316.Wang Chenghai,Dong Wenjie,Wei Zhigang.2003.Study on relationship between the frozen-thaw process in Qinghai-Xizang Plateau and circulation in east Asia[J].Chinese Journal of Geophysics,46(3):309-316.
[38]王澄海,师锐.2007.青藏高原西部陆面过程特征的模拟分析[J].冰川冻土,29(1):73-81.Wang Chenghai,Shi Rui.2007.Simulation of the land surface process in the western Tibetan Plateau in summer[J].J Glaciology Geocryology,29 (1):73-81.
[39]王澄海,师锐,左洪超.2008.青藏高原西部冻融期陆面过程的模拟分析[J].高原气象,27(2):239-248.Wang Chenghai,Shi Rui,Zuo Hongchao.2008.Analysis on simulation of characteristic of land surface in western Qinghai-Xizang Plateau during frozen and thawing[J].Plateau Meteor,27(2):239-248.
[40]王少影,张宇,吕世华,等.2012.玛曲高寒草甸地表辐射与能量收支的季节变化[J].高原气象,31(3):605-614.Wang Shaoyin,Zhang Yu,L Shihua,et al.2012.Seasonal variation characteristics of radiation and energy budgets in alpine meadow ecosystem in Maqu grassland[J].Plateau Meteor,31(3):605-614.
[41]王一博,吴青柏,牛富俊.2011.长江源北麓河流域多年冻土区热融湖塘形成对高寒草甸土壤环境的影响[J].冰川冻土,33 (3):659-667.Wang Yibo,Wu Qingbai,Niu Fujun.2011.The impact of thermokarst lake formation on soil environment of alpine meadow in permafrost regions in the Beiluhe basin of the Tibetan Plateau[J].J Glaciology Geocryology,33 (3):659-667.
[42]文晶,王一博,高泽永,等.2013.北麓河流域多年冻土区退化草甸的土壤水文特征分析[J].冰川冻土,35(4):929-937.Wen Jing,Wang Yibo,Gao Zeyong,et al.2013.Soil hydrological characteristics of the degrading meadow in permafrost regions in the Beiluhe river basin[J].J Glaciology Geocryology,35(4):929-937.
[43]吴灏,叶柏生,吴锦奎,等.2013.疏勒河上游高寒草甸下垫面湍流特征分析[J].高原气象,32(2):368-376.Wu Hao,Ye Baisheng,Wu Jinkui,et al.2013.Analysis on turbulent feature of alpine meadow in the upper reach of Shule river[J].Plateau Meteor,32(2):368-376.DOI:10.7522/j.issn.1000-0534.2013.00036.
[44]肖瑶,赵林,李韧,等.2010.藏北高原多年冻土区地表反照率特征分析[J].冰川冻土,2010,32(3):480-488.Xiao Yao,Zhao Lin,Li Ren,et al.2010.The characteristics of surface albedo in permafrost regions of northern Tibetan Plateau[J].J Glaciology Geocryology,2010,32(3):480-488.
[45]辛羽飞,武炳义,卞林根,等.2012.冻土水热变化对东亚气候影响的模拟[J].科学通报,57(30):2872-2881.Xin Yufei,Wu Bingyi,Bian Lingeng,et al.2012.The simulation of impacts of thermal and hydrological variations of frozen soil on the climate of east Asia[J].Chinese Science Bulletin,57(30):2872-2881.
[46]杨梅学,姚檀栋,何元庆,等.2002.藏北高原地气之间的水分循环[J].地理科学,22(1):29-33.Yang Meixue,Yao Tangdong,He Yuanqing,et al.2002.The water cycles between land surface and atmosphere in northern part of Tibetan Plateau[J].Scientia Geographica Sinica,22(1):29-33.
[47]杨玉忠,吴青柏,贠汉伯.2013.北麓河多年冻土区降水及河水稳定同位素特征分析[J].水科学进展,24(6):978-985.Yang Yuzhong,Wu Qingbai,Yun Hanbo.2013.Characteristic analysis of stable isotope variation in precipitation and rivers in Beilu river permafrost region[J].Advances in Water Science,24(6):978-985.
[48]张中琼,吴青柏,刘勇智,等.2015.多年冻土区典型地面浅层地温对降水的响应[J].工程地质学报,23(5):948-953.Zhang Zhongqiong,Wu Qingbai,Liu Zhiyong,et al.2015.Response of shallow ground temperature to precipitation at different ground covers in permafrost region[J].Journal of Engineering Geology,23(5):948-953.
[49]赵林,程国栋,李述训,等.2000.青藏高原五道梁附近多年冻土活动层内冻结和融化过程[J].科学通报,45(11):1205-1210.Zhao Lin,Cheng Guodong,Li Shuxun,et al.2000.The freezing and thawing processes of active layer of permafrost near Wudaoliang in Qinghai-Xizang Plateau[J].Chinese Science Bulletin,45(11):1205-1210.
Outlines

/