Influence of Background Sample Error Simulation on Data Assimilation and Forecast

  • CHEN Yaodeng ,
  • CHEN Xiaomeng ,
  • ZENG Lamei ,
  • WANG Hongli ,
  • WANG Yuanbing
Expand
  • Key Laboratory of Meteorological Disaster of Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. Hunan Observatory, Changsha 410119, China;3. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado 80302, USA;4. Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado 80302, USA

Received date: 2014-08-25

  Online published: 2016-06-28

Abstract

A reasonable background error covariance(B)is the key to data assimilation.Three sample error simulation techniques for calculating B,such as,Randomized Control Variables(RandomCV),Breeding of Growing Modes(BGM)and the NMC method,are used to simulate the background error,and different B are gotusing the WRFDA system,then the statistical characteristics of the background error covariance and their impacts on analysis and forecasting are discussed.The results show that there is more significant background error amplitude in NMC and RandomCV than in BGM,so the observation will carries a bigger weight in data assimilation when NMC and RandomCV are chosen,and the length-scale of RandomCV is the biggest,so the influence range of observation is wider when RandomCV is used.The background error covariance of RandomCV is generated from perturbing the initial condition by the CV3 in WRF model,which achieves almost the similar effect as NMC and better than CV3,but a lower computational and manual cost than NMC.

Cite this article

CHEN Yaodeng , CHEN Xiaomeng , ZENG Lamei , WANG Hongli , WANG Yuanbing . Influence of Background Sample Error Simulation on Data Assimilation and Forecast[J]. Plateau Meteorology, 2016 , 35(3) : 767 -776 . DOI: 10.7522/j.issn.1000-0534.2014.00156

References

[1]Barker D M,Huang W,Guo Y R,et al.2004.A three-dimensional variational data assimilation system for MM5:implementation and initial results[J].Mon Wea Rev,132(4):897-914.
[2]Barker D,Huang X Y,Liu Z,et al.2012.The weather research and forecasting model's community variational/ensemble data assimilation system:WRFDA[J].Bull Amer Meteor Soc,93(6):831-843.
[3]Berre L,Desroziers G.2010.Filtering of background error variances and correlations by local spatial averaging:A review[J].Mon Wea Rev,138(10):3693-3720.
[4]Chen Y,Rizvi S R H,Huang X Y,et al.2013.Balance characteristics of multivariate background error covariances and their impact on analyses and forecasts in tropical and Arctic regions[J].Meteor Atmos Phys,121(1):79-98.
[5]Evensen G.2003.The ensemble Kalman filter:Theoretical formulation and practical implementation[J].Ocean Dynamics,53(3):343-367.
[6]Michel Y,Auligné T.2010.Inhomogeneous background error modeling and estimation over Antarctica [J].Mon Wea Rev,138(6):2229-2252.
[7]Parrish D F,Derber J C.1992.The National Meteorological Center's spectral statistical-interpolation analysis system[J].Mon Wea Rev,120(8):1747-1763.
[8]Pereira M B,Berre L.2006.The use of an ensemble approach to study the background error covariances in a global NWP model[J].Mon Wea Rev,134(9):2466-2489.
[9]Wang H,Sun J,Zhang X,et al.2013.Radar data assimilation with WRF 4D-Var.Part I:System development and preliminary testing[J].Mon Wea Rev,141(7):2224-2244.
[10]曹小群,黄思训,张卫民,等.2008.区域三维变分同化中背景误差协方差的模拟[J].气象科学,28(1):8-14.Cao Xiaoqun,Huang Sixun,Zhang Weiming,et al.2008.Modelling background error covariance in regional 3D-VAR[J].Scientia Meteor Sinica,28(1):8-14.
[11]陈耀登,曾腊梅,Huang Xiangyu,等.2014.纬度依赖背景场误差协方差及其对台风同化和预报的影响研究[J].热带气象学报,30(3):465-474.Chen Yaodeng,Zeng Lamei,Huang Xiangyu,et al.2014.A study of latitude-dependent background error covariance and its impacts for typhoon data assimilation and forcast[J].J Trop Meteor,30(3):465-474.
[12]范水勇,张朝林,仲跻芹.2006.MM5三维变分系统在北京地区冷暖季背景场误差的对比分析[J].高原气象,25(5):855-861.Fan Shuiyong,Zhang Chaolin,Zhong Jiqin.2006.Contrast analysis of background error of MM5 3DVAR System in cold and warm seasons in Beijing[J].Plateau Meteor,25(5): 855-861.
[13]何光碧,彭俊,屠妮妮.2015.基于高分辨率地形数据的模式地形构造与数值试验[J].高原气象,34(4):910-922.He Guangbi,Peng Jun,Tu Nini.2015.Terrain construction and experiment for numerical model based on high resolution terrain data[J].Plateau Meteor,34(4):910-922.DOI:10.7522/j.issn.1000-0534.2014.00022.
[14]邱晓滨,邱崇践.2009.混合误差协方差用于集合平方根滤波同化试验[J].高原气象,28(6):1399-1407.Qiu Xiaobing,Qiu Chongjian.2009.The suitability test of ensemble square root filter with hybrid background error covariance[J].Plateau Meteor,28(6):1399-1407.
[15]谭燕,陈葆德.2014.多种扰动组合的热带气旋路径集合预报技术研究[J].高原气象,33(4):1012-1021.Tan Yan,Chen Baode.2014.Study of multiple perturb tropical cyclone ensemble forecast[J].Plateau Meteor,33(4):1012-1021.DOI:10.7522/j.issn.1000-0534.2013.00068.
[16]文小航,吕世华,董文杰,等.2014.西北干旱区绿洲—戈壁资料同化数据集的建立与分析[J].高原气象,33(1):66-79.Wen Xiaohang,Lü Shihua,Dong Wenjie,et al.2014.Establishment and analysis of assimilation dataset of oasis-gobi system over an arid region in Northwestern China[J].Plateau Meteor,33(1):66-79.DOI:10.7522/j.issn.1000-0534.2013.00073.
[17]肖玉华,何光碧,陈静,等.2011.区域集合预报增长模繁殖扰动方法研究[J].高原气象,30(1):94-102.Xiao Yuhua,He Guangbi,Chen Jing,et al.2011.Study on perturbing method in regional BGM ensemble prediction system[J].Plateau Meteor,30(1):94-102.
[18]庄照荣,薛纪善,朱宗申,等.2006.非线性平衡方案在三维变分同化系统中的应用[J].气象学报,64(2):137-148.Zhuang Zhaorong,Xue Jishan,Zhu Zongshen,et al.2006.Application of nonlinear balance scheme in three-dimensional variational data assimilation[J].Acta Meteor Sinica,64(2):137-148.
Outlines

/