Impact of Boundary Layer Parameterization Scheme on the Diurnal Variation of Precipitation in Central Eastern China

  • XU Jianyu ,
  • LIU Yu
Expand
  • Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China

Received date: 2015-02-04

  Online published: 2016-08-28

Abstract

The planetary boundary layer (PBL) is an important part of the numerical weather prediction model. Previous sensitive studies of the PBL schemes are mainly focused on the typical typhoon or heavy rainfall cases, but it is not clear how the PBL schemes impact the diurnal variation of precipitation in the operational model. Based on the operational central China regional mesoscale model WRF3D, sensitivity experiments have been made in July 2012 by using two PBL schemes named MYJ and ACM2 respectively. Then the impact of different schemes on the diurnal variation of precipitation in central eastern China has been studied by comparing the forecasted precipitation with the high-resolution observation provided by the National Meteorological Information Center. Furthermore, because of WRF3D is not a cloud-resolving model due to the limit of computing resources, the interaction of implicit and explicit precipitation processes should also be studied by deeply diagnosing the model outputs. The result showed that the precipitation forecasts by both schemes can reflect the double peaks observed in central eastern China to a certain extent. For the early morning precipitation peak, the difference between these two forecasts is little. But the difference in the late afternoon peak is distinct. Specifically, the late afternoon peak forecasted by the MYJ scheme is 4h ahead of the observation with an exaggerated amplitude, while it is only 1h ahead and the amplitude is reasonable by using the ACM2 scheme. In general, the diurnal variation of precipitation forecasted by ACM2 is more close to the observation. Dividing the forecasted precipitation into the implicit and explicit part, it shows that the late afternoon precipitation peak is mainly composed of the implicit one. In addition, the area-averaged implicit (explicit) precipitation forecasted by the MYJ scheme is more (less) than ACM2 at all times. Furthermore, detailed analysis of the high-resolution model outputs shows that, the over-predicted implicit precipitation by the MYJ scheme is mainly due to its own local closure, making the lower troposphere too wet, resulting in the larger CAPE and slightly smaller CIN appear some time earlier, and eventually triggering the KF cumulus parameterization scheme to produce the heavier and earlier implicit precipitation compared with ACM2. On the other hand, there is energy competition between the processes of implicit and explicit precipitation, inducing the much less hydrometeors forecasted by the MYJ scheme and leading to the less explicit precipitation compared with ACM2. It is concluded that there's important impact of the PBL schemes on the forecasted diurnal variation of precipitation in central eastern China. This result is intended to provide a reliable basis for the optimization of the PBL scheme in WRF3D.

Cite this article

XU Jianyu , LIU Yu . Impact of Boundary Layer Parameterization Scheme on the Diurnal Variation of Precipitation in Central Eastern China[J]. Plateau Meteorology, 2016 , 35(4) : 969 -978 . DOI: 10.7522/j.issn.1000-0534.2015.00078

References

[1]Chou M D, Suarez M J.1994.An efficient thermal infrared radiation parameterization for use in general circulation models[M].NASA Tech Memo 104606, 3:85.
[2]Clark A J, Gallus Jr.W A, Chen T C.2007.Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models[J].Mon Wea Rev, 135(10):3456-3473.
[3]Dai A G.2001.Global precipitation and thunderstorm frequencies.Part II:Diurnal variations[J].J Climate, 14(6):1112-1128.
[4]Hong S Y, Lim J O J.2006.The WRF Singlesingle-Moment moment 6-Class class Microphysics microphysics Scheme scheme (WSM6)[J].J Korean Meteor Soc, 42:129-151.
[5]Hu X M, Nielsen-Gammon J W, Zhang F Q.2010.Evaluation of three planetary boundary layer schemes in the WRF model[J].J Appl Meteor Climatol, 49(9):1831-1844.
[6]Janjic Z I.2002.Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model[R].NCEP Office Note, No.437:61pp.
[7]Kain J S.2004.The Kain-Fritsch convective parameterization:An update[J].J Appl Meteor, 43(1):170-181.
[8]Klemp J B, Skamarock W C, Dudhia J.2007.Conservative split-explicit time integration methods for the compressible nonhydrostatic equations[J].Mon Wea Rev, 135:2897-2913.
[9]Lee M I, Schubert S D, Suarez M J, et al.2007.Diurnal cycle of precipitation in the NASA Seasonal to Interannual Prediction Project atmospheric general circulation model[J].J Geophys Res, 112:D16111.DOI:10.1029/2006JD008346.
[10]Mlawer E J, Taubman S J, Brown P D, et al.1997.Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave[J].J Geophys Res, 102(D14):16663-16682.
[11]Nesbitt S W, Zipser E J.2003.The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements[J].J Climate, 16(10):1456-1475.
[12]Pleim J E.2007.A combined local and non-local closure model for the atmospheric boundary layer.Part 1:Model description and testing[J].J Appl Meteorol Climatol, 46:1383-1395.
[13]Xu L R, Zhao M.2000.The influence of boundary layer parameterization schemes on mesoscale heavy rain system[J].Adv Atmos Sci, 17(3):458-472.
[14]Yang S, Smith E A.2008.Convective-stratiform precipitation variability at seasonal scale from 8 yr of TRMM observations:Implications for multiple modes of diurnal variability[J].J Climate, 21(16):4087-4114.
[15]Yu R C, Xu Y P, Zhou T J, et al.2007a.Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J].Geophys Res Lett, 34:L13703.DOI:10.1029/2007GL030315.
[16]Yu R C, Zhou T J, Xiong A Y, et al.2007b.Diurnal variations of summer precipitation over contiguous China[J].Geophys Res Lett, 34:L01704.DOI:10.1029/2006GL028129.
[17]蔡芗宁, 周庆亮, 钟青, 等.2007.边界层参数化对"雅安天漏"降水数值模拟的影响[J].气象, 33(5):12-19.Cai Xiangning, Zhou Qingliang, Zhong Qing, et al.2007.Impact of boundary layer parameterization on numerical simulation of "Ya-An-Tian-Lou" [J].Meteor Mon, 33(5):12-19.
[18]蔡芗宁, 寿绍文, 钟青.2006.边界层参数化方案对暴雨数值模拟的影响[J].南京气象学院学报, 29(3):364-370.Cai Xiangning, Shou Shaowen, Zhong Qing.2006.Impact of different boundary layer parameterization schemes on the numerical simulation for a rainstorm[J].J Nanjing Insti Meteor, 29(3):364-370.
[19]陈超君, 李俊, 王明欢.2014.2013年华中区域中尺度业务数值预报的客观检验[J].暴雨灾害, 33(2):187-192.Chen Chaojun, Li Jun, Wang Minghuan.2014.Objective verification on the operational numerical prediction system in central China in 2013[J].Torrential Rain and Disasters, 33(2):187-192.
[20]陈炯, 王建捷.2006.边界层参数化方案对降水预报的影响[J].应用气象学报, 17(增刊1):11-17.Chen Jiong, Wang Jianjie.2006.Mesoscale precipitation simulation sensitivity to PBL parameterization[J].Quart J Appl Meteor, 17(supp1):11-17.
[21]江志红, 卢尧, 丁裕国.2013.基于时空结构指标的中国融合降水资料质量评估[J].气象学报, 71(5):891-900.Jiang Zhihong, Lu Yao, Ding Yuguo.2013.Analysis of the high-resolution merged precipitation products over China based on the temporal and spatial structure score indices[J].Acta Meteor Sinica, 71(5):891-900.
[22]苗爱梅, 郝振荣, 贾利冬, 等.2014."0702"山西大暴雨过程的多尺度特征[J].高原气象, 33(3):786-800.Miao Aimei, Hao Zhenrong, Jia Lidong, et al.2014.The multi-scale features of "0702" heavy rainstorm process[J].Plateau Meteor, 33(3):786-800.DOI:10.7522/j.issn.1000-0534.2013.00014.
[23]潘旸, 沈艳, 宇婧婧, 等.2012.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验[J].气象学报, 70(6):1381-1389.Pan Yang, Shen Yan, Yu Jingjing, et al.2012.Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique[J].Acta Meteor Sinica, 70(6):1381-1389.
[24]沈艳, 潘旸, 宇婧婧, 等.2013.中国区域小时降水量融合产品的质量评估[J].大气科学学报, 36(1):37-46.Shen Yan, Pan Yang, Yu Jingjing, et al.2013.Quality assessment of hourly merged precipitation product over China[J].Trans Atmos Sci, 36(1):37-46.
[25]盛日锋, 王俊, 龚佃利, 等.2011.济南"7.18"大暴雨中尺度分析[J].高原气象, 30(6):1554-1565.Sheng Rifeng, Wang Jun, Gong Dianli, et at.2011.Mesoscale analysis on a heavy rainstorm in Jinan on 18 July 2007[J].Plateau Meteor, 30(6):1554-1565.
[26]吴海英, 曾明剑, 尹东屏, 等.2010.一次苏皖特大暴雨过程中边界层急流结构演变特征和作用分析[J].高原气象, 29(6):1431-1440.Wu Haiying, Zeng Mingjian, Yin Dongping, et al.2010.Analysis on variable characteristics of boundary layer jet structure and its function in the process of super heavy rainstorm occurred in Jiangsu and Anhui provinces[J].Plateau Meteor, 29(6):1431-1440.
[27]肖玉华, 何光碧, 顾清源, 等.2010.边界层参数化方案对不同性质降水模拟的影响[J].高原气象, 29(2):331-339.Xiao Yuhua, He Guangbi, Gu Qingyuan, et al.2010.Impact of boundary layer parameterization schemes on numerical simulation of different property precipitation[J].Plateau Meteor, 29(2):331-339.
[28]徐慧燕, 朱业, 刘瑞, 等.2013.长江下游地区不同边界层参数化方案的试验研究[J].大气科学, 37(1):149-159.Xu Huiyan, Zhu Ye, Liu Rui, et al.2013.Simulation experiments with different planetary boundary layer schemes in the lower reaches of the Yangtze River[J].Chinese J Atmos Sci, 37(1):149-159.
[29]张大林.1998.各种非绝热物理过程在中尺度模式中的作用[J].大气科学, 22(4):548-561.Zhang Dalin.1998.Roles of various diabatic physical processes in mesoscale models[J].Chinese J Atmos Sci, 22(4):548-561.
[30]赵鸣.2008.边界层和陆面过程对中国暴雨影响研究的进展[J].暴雨灾害, 27(2):186-190.Zhao Ming.2008.A review of the research on the effects of boundary layer and land surface process on heavy rain in China[J].Torrential Rain and Disasters, 27(2):186-190.
Outlines

/