This research chooses two satellites' precipitation products which are the newly CMORPH version1.0 and TRMM3B42 V6, using these two products to estimate the precipitation and events of precipitation in Sichuan province from May to August 2013 under three different temporal resolution which are 3 hours, daily and monthly. Using gauge data's location to choose the corresponding nearest data of satellite products, this method is different from before those which to resample and interpolate the pixel data, in this way the error may decline. This research chooses correlation coefficient to study the effect synchronous of precipitation algorithms, BIAS to study precipitation algorithm's systematical error and degree of correlation, RMSE to study the deviation of precipitation algorithm. Finding that both of the two products have bad synchrony with gauge data and can't reflect the precipitation information under 3 hours temporal resolution, but TRMM3B42 V6 has less systematic error and corresponds with gauge data better than CMORPH. For both of the two products are origin from different satellite data, each of these initial data may has its own error, so the error may still exist after merging them to the new product; The initial satellite data consist geosynchronous data, the shortage of geosynchronous satellite data is the period, if the period is long or short enough, the satellite may get the wrong data, these two reasons may cause the error of the final precipitation products. Both of the two products' synchrony are increasing when the temporal resolution comes to daily, TRMM3B42 V6's bias is less than CMORPH, it corresponds with gauge data better than CMORPH and has better synchrony with gauge data. TRMM3B42 V6 underestimates the precipitation and CMORPH overestimates the precipitation under monthly temporal scale, and TRMM3B42 V6 has higher correlation with gauge data than CMORPH, because CMORPH has use infrared data to get motion vector, and convective cloud can influent the brightness temperature of the cloud, when it overestimates brightness temperature of the top cloud will cause precipitation's overestimation. As for estimating the events of precipitation, this research uses three coefficients to analysis this issue, and they are: probability of detection (PD), frequency of hit (FH) and Heidke skill score (HSS). Form these three coefficients can know that CMORPH is better than TRMM3B42 V6 at detecting the events of precipitation.
[1]Andrew J N, Robert F A.1993.An intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters[J].J Appl Meteor, 32(2):357-373.
[2]ChenS, Yang Hong, Qing Cao, et al.2013.Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan:Are remote sensing products ready for gauge denial scenario of extreme events?[OL].J Hydrol, http://dx.doi.org/10.1016/j.jhydrol.2012.12.026.
[3]Dawit A Z, Mekonnen G.2008.Evaluation of CMORPH precipitation products at fine space-time scales[J].Journal of Hydrometeorology, 10:300-307.
[4]Hu Qiongfang, Yang Dawen, Wang Yintang, et al.2013.Accuracy and spatio-temporal variation of high resolution satellite rainfall estimate over the Ganjiang River Basin[J].Science China Technological Sciences, 56(4):853-865.
[5]Huffman G, Adler R, Bolvin D, et al.2007.The TRMM Multisatellite Precipitation Analysis(TMPA):Quasi-Global, multiyears, combined-sensor precipitation estimates at fine scales[J].Journal of Hydrometeorology, 8:38-55.
[6]Jiang Shanhu, Ren Liliang, Yong Bin, et al.2010.Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China[J].Water Science and Engineering, 3(4):405-417.
[7]John D T, Richard E C, Phillip A A.2008.Comparison of ground-based radar and geosynchronous satellite climatologies of warm-season precipitation over the United States[J].J Appl Meteor Climatol, 47(12):3264-3270.
[8]John E J, Robert J J, Yelena Y.2001.A real-time global half-hourly pixel-resolution IR dataset and its applications[J].Bull Amer Meteor Soc, 2001, 82:205-217.
[9]Li Zhe, Yang Dawen, Yang Hong.2010.Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River[J].J Hydrology, 500(2013):157-169.
[10]Robert F A, George J H, Alfred C, et al.2003.The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)[J].Journal of Hydrometeorology.4:1147-1167.
[11]Robert J J, John E J, Phillip A A, et al.2004.CMORPH_A method that produces global precipitation estimates from passive[J].Journal of Hydrometeorology.5:487-503.
[12]Tufa D, Stephen J C, Pietro C.2011.Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America[J].Satellite Rainfall Applications for Surface Hydrology, 193-204.
[13]Yang Hong, Robert F A, Faisal H, et al.2007.A first approach to global runoff simulation using satellite rainfall estimation[J].Water Resour Res, 43, W08502.DOI:10.1029/2006 WR005739.
[14]Zheng Jing, Shi Chunxiang, Lu Qifeng, et al.2010.Evaluation of total precipitable water over East Asia from FY-3A/VIRR Infrared Radiances[J].Atmos Ocean Sci Lett, 3(2):93-99.
[15]白爱娟, 刘长海, 刘晓东.2008.TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J].地球物理学报, 51(3):704-714.Bai Aijuan, Liu Changhai, Liu Xiaodong.2008.Diurna variation of summer rainfall over the Tibetan Plateau and its neighboring regiongs revealed by TRMM multi-satellite precipitation analysis[J].Chinese J Geophys, 51(3):704-714.
[16]崔林丽, 杨引明, 游然, 等.2012.FY-3A/MWHS数据在定量降水估计中的应用研究[J].高原气象, 31(5):1439-1445.Cui Linli, Yang Yinmin, You Ran, et al.2012.Application study of FY-3A/MWHS in Quantitative precipitation estimation[J].Plateau Meteor, 31(5):1439-1445.
[17]傅云飞, 宇如聪, 徐幼平, 等.2003.TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究[J].气象学报, 61(4):421-431.Fu Yunfei, Yu Ruchong, Xu Youping, et al.2003.TRMM/PR and TRMM/TMI's observation of the structure over two moderate scale heavy precipitation[J].Acta Meteor Sinica, 61(4):421-431.
[18]谷松岩, 高慧琳, 朱元竞, 等.2004.TMI被动微波遥感资料用于地表洪涝特征分析试验[J].遥感学报, 8(3):261-268.Gu Songyan, Gao Huilin, Zhu Yuanjin, et al.2004.The application of TMI polarization ratio PR in Flooded Area detection and classification[J].J Remote Sens, 8(3):261-268.
[19]何光碧, 屠妮妮, 张利红, 等.2013.青藏高原东侧一次低涡暴雨过程地形影响的数值实验[J].高原气象, 32(6):1546-1556.He Guangbi, Tu Nini, Zhang Lihong, et al.2013.Numerialc experiment of terrain effect of vortex rainstorm process on east side of Qinghai-Xizang Plateau[J].Plateau Meteor, 32(6):1546-1556, DOI:10.7522/j.issn.1000-0534.2012.00150.
[20]何会中, 崔哲虎, 程明虎, 等.2004.TRMM卫星及其数据产品应用[J].气象科技, 32(1):13-18.He Huizhong, Cui Zhehu, Chen Minghu, et al.2004.TRMM satellite and application of its products[J].Meteor Sci Technol, 32(1):13-18.
[21]何由, 阳坤, 姚檀栋, 等.2012.基于WRF模式对青藏高原一次强降水的模拟[J].高原气象, 31(5):1183-1191.He You, Yang Kun, Yao Tandong, et al.2012.Numerical simulation of a heavy precipitation in Qinghai-Xizang plateau based on WRF model[J].Plateau Meteor, 31(5):1183-1191.
[22]衡志炜, 宇如聪, 傅云飞, 等.2011.基于TMI产品资料对数值模式水凝物模拟能力的检验分析[J].大气科学, 35(3):506-518.Heng Zhiwei, Yu Ruchong, Fu Yunfei, et al.2011.Evaluation and analysis of simulation capability of hydrometeor variables in numerical models based on TMI product[J].Chinese J Atmos Sci, 35(3):506-518.
[23]阚宝云, 苏凤阁, 童凯, 等.2013.四套降水资料在喀喇昆仑山叶尔羌河上游流域的适用性分析[J].冰川冻土, 35(3):710-722.Gan Baoyun, Su Fengge, Tong Kai, et al.2013.Analysis of the applicability of four precipitation datasets in the upper reaches of the yarkant river, the Karakorum[J].J Glaciology Geology, 35(3):710-722.
[24]旷达.2013.CMORPH卫星反演降水产品在中国东部地区的误差估计[D].北京:中国科学院遥感与数字地球研究所.Kuang Da.2013.The error's estimation of CMORPH precipitation data in the eastern China[D].Beijing:Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS).
[25]李典, 白爱娟, 黄盛军.2012.利用TRMM卫星资料对青藏高原地区强对流天气特征分析[J].高原气象, 31(2):304-311.Li Dian, Bai Aijuan, Huang Shengjun.2012.Characteristic analysis of a severe convective weather over Tibetan Plateau based on TRMM data[J].Plateau Meteor, 31(2):304-311.
[26]刘鹏, 傅云飞, 冯沙, 等.2010.中国南方地基雨量计观测与星载测雨雷达探测降水的比较分析[J].气象学报, 68(6):922-835.Liu Peng, Fu Yunfei, Feng Sha, et al.2010.A comparison of the precipitation from rain gauge observations with from TRMM PR measurements in the southern China[J].Acta Meteor Sinica, 68(6):822-835.
[27]刘奇, 傅云飞.2007.基于TRMM_TMI的亚洲夏季降水研究[J].中国科学:地球科学, 37(1):111-122.Liu Qi, Fu Yunfei.2007.The research of Asia's precipitation based on TRMM/TMI[J].Sience in China Press.37(1):111-122.
[28]穆振侠, 姜卉芳.2010.基于TRMM_TMI的天山西部山区降水研究[J].干旱区资源与环境, 24(10):66-71.Mu Zehngxia, Jiang Huifang.2010.The vertical distribution law of precipitation in the western Tianshan Mountain based on TRMM/TMI[J].J Arid Land Resour Environ, 24(10):66-71.
[29]彭思岭.2010.气象要素时空插值方法研究[D].长沙:中南大学研究生论文.Peng Silin.2010.The research and the method of Atmospheric factors'interpolation[D].Changsha:Central South University.
[30]王雨, 刘鹏, 李天奕, 等.2011.TMI反演海温与Hadley中心海温资料的气候尺度比较分析[J].中国科学:地球科学, 41(8):1200-1210.Wang Yu, Liu Peng, Li Tianyi, et al.2011.Climatologic comparison of HadISST1 and TMI sea surface temperature datasets[J].Sci China:Earth Sci, 41(8):1200-1210, DOI:10.1007/s11430-011-4214-1.
[31]赵逸舟, 马耀明, 黄镇, 等.2007.利用TRMM_TMI资料反演青藏高原中部土壤湿度[J].高原气象, 26(5):952-957.Zhao Yizhou, Ma Yaoming, Huang Zhen, et al.2007.The retrieval of soil moisture from TRMM/TMI data in central of Tibetan plateau.Plateau meteorology[J].Plateau Meteor, 26(5):952-957.
[32]自勇, 许吟隆, 傅云飞.2007.GPCP与中国台站观测降水的气候特征比较[J].气象学报, 65(1):64-74.Zi Yong, Xu Yinlong, Fu Yunfei.2007.Climatological comparison studies between GPCP and rain gauge precipitations in China[J].Acta Meteor Sinica, 65(1):64-74.