Characteristics of Charge Sources Retrieved from the Multi-Station ynchronous Electric Field Change Measurements of Negative Return-Strokes

  • WU Zhijun ,
  • QIE Xiushu ,
  • WANG Dongfang
Expand
  • Key Laboratory of Middle Atmosphere and Global Environment Observation, Institude of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China;2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-12-31

  Online published: 2016-08-28

Abstract

Using the measurements from slow and fast antenna of 7 stations synchronized by GPS during a thunderstorm which passed over Beijing Lightning NETwork (BLNET) on 9 August 2011, the magnitude and location of charge neutralized by 127 return strokes of 51 negative cloud-to-ground (CG) lightning flashes are fitted by using nonlinear least-squares fitting algorithm after Monte Carlo data processing and correction in advance. The fitting results were analyzed from several aspects shown as below. (1) For the charge sources neutralized by the strokes in one multi-stroke negative CG lightning, the horizontal distribution range Le and the vertical distribution range ΔHe was 13.0±9.3 km and 2.1±1.7 km respectively, and the ratio LeHe was 61.2±278.5. As the vertical range ΔHe increased, the horizontal range Le and the ratio LeHe decreased. (2) When the thunderstorm evolved from developing stage into mature stage, the maximum height of the stroke charge sources raised up gradually. When the thunderstorm evolved into dissipating stage, the maximum height of the stroke charge sources significantly became less than before. Throughout this period, the minimum height of the stroke charge sources kept around 5 km and the horizontal locations moved from northwest to southeast while the thunderstorm moved in the same direction. (3) The superposition of the charge sources and the radar echo showed the charge sources of negative return-stroke were mainly concentrated inside the cloud region with radar reflectivity higher than 25 dBZ. The charge sources with height more than 7 km accounted for 34% of the total and were concentrated inside updrafts of convection, while the charge sources with height less than 7 km were about 66% and located both inside and outside updrafts of convection.

Cite this article

WU Zhijun , QIE Xiushu , WANG Dongfang . Characteristics of Charge Sources Retrieved from the Multi-Station ynchronous Electric Field Change Measurements of Negative Return-Strokes[J]. Plateau Meteorology, 2016 , 35(4) : 1123 -1134 . DOI: 10.7522/j.issn.1000-0534.2015.00070

References

[1]Baranski P, Loboda M, Wiszniowski J, et al.2012.Evaluation of multiple ground flash charge structure from electric field measurements using the local lightning detection network in the region of Warsaw[J].Atmos Res, 117:99-110.
[2]Brook M, Nakano M, Krehbiel P, et al.1982.The electrical structure of the Hokuriku winter thunderstorms[J].J Geophys Res, 87(C2):1207-1215.
[3]Hager W W, Sonnenfeld R G, Aslan B C, et al.2007.Analysis of charge transport during lightning using a balloon-borne electric field sensors and Lightning Mapping Array[J].J Geophys Res, 112(D18):D18204.DOI:10.1029/2006JD008187.
[4]Hager W W, Feng W.2013.Charge rearrangement deduced from nearby electric field measurements of an intracloud flash with K-changes[J].J Geophys Res, 118:10313-10331.DOI:10.1002/jgrd.50782.
[5]Koshak W J, Krider E P, Murray N, et al.2007.Lightning charge retrievals:dimensional reduction, LDAR constraints, and a first comparison with LIS satellite data[J].J Atmos Oceanic Technol, 24(11):1817-1838.
[6]Krehbiel P R, Brook M.1979.An analysis of the charge structure of lightning discharges to ground[J].J Geophys Res, 84(C5):2432-2456.
[7]Krider E P.1989.Electric field changes and cloud electrical structure[J].J Geophys Res, 94(D11):13145-13149.
[8]Lu G, Cummer S A, Li J, et al.2009.Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system[J].Geophys Res Lett, 36(L15):L15805.DOI:10.1029/2009GL038880.
[9]Lu G, Cummer S A, Blakeslee R J, et al.2012.Lightning morphology and impulse charge moment changes of high peak current negative strokes[J].J Geophys Res, 117(D04):D04212.DOI:10.1029/2011JD016890.
[10]Lu G, Winn W P, Sonnenfeld R G.2011.Charge transfer during intracloud lightning from a time-dependent multidipole model[J].J Geophys Res, 116(D03):D03209.DOI:10.1029/2010JD 014495.
[11]Maggio C R, Marshall T C, Stolzenburg M.2009.Estimations of charge transferred and energy released by lightning flashes[J].J Geophys Res, 114(D14):D14203.DOI:10.1029/2008JD 011506.
[12]Marshall T C, Rust W D, Stolzenburg M.1995.Electrical structure and updraft speeds in thunderstorms over the southern Great Plains[J].J Geophys Res, 100(D1):1001-1015.
[13]Michishita K, Sato H, Yokoyama S, et al.2015.Negative first return-stroke current peaks and impulse charge transfer[J].Electrical Engineering in Japan, 190(3):37-44.
[14]Qie X, Zhang T, Zhang G, et al.2009.Electrical characteristics of thunderstorms in different plateau regions of China[J].Atmos Res, 91:244-249.DOI:10.1016/j.atmosres.2008.04.014.
[15]Qie X, Yu Y, Liu X, et al.2000.Charge analysis on lightning discharges to the ground in Chinese Inland Plateau (Close to Tibet)[J].Ann Geophys, 18(10):1340-1348.
[16]Stolzenburg M, Rust W D, Marshall T C.1998.Electrical structure in thunderstorm convective regions:3 Synthesis[J].J Geophys Res, 103(D12):14097-14096.
[17]Thomas R J, Krehbiel P R, Rison W, et al.2001.Observations of VHF source powers radiated by lightning[J].Geophys Res Lett, 28(1):143-146.
[18]Thomson E M, Galib M A, Uman M A, et al.1984.Some features of stroke occurrence in Florida lightning flashes[J].J Geophys Res, 89(D3):4910-4916.
[19]Zhang Y, Meng Q, Lu W, et al.2006.Charge structures and cloud-to-ground lightning discharges characteristics in two supercell thunderstorms[J].China Sci Bull, 51(2):198-212.
[20]范祥鹏, 张广庶, 王彦辉, 等.2011.高原复杂地形条件下慢天线测量值的订正[J].高原气象, 30(4):1046-1051.Fan Xiangpeng, Zhang Guangshu, Wang Yanhui, et al.2011.Revision of the measured value of slow antenna under the complex terrain condition of Qinghai-Tibetan plateau[J].Plateau Meteor, 30(4):1046-1051.
[21]耿雪莹, 张其林, 刘明远.2012.地面建筑物(群)对雷暴云大气电场影响的模拟研究[J].气象科技, 40(5):828-833.Geng Xueying, Zhang Qilin, Liu Mingyuan.2012.Effect of tall buildings on thunderstorm electric field[J].Meteor Sci Technol, 40(5):828-833.
[22]刘冬霞, 郄秀书, 冯桂力.2010.华北一次中尺度对流系统中的闪电活动特征及其与雷暴动力过程的关系研究[J].大气科学, 34(1):95-104.Liu Dongxia, Qie Xiushu, Feng Guili.2010.Evolution of the lightning characteristics and dynamical structure in a mesoscale convective system over North China[J].Chinese J Atmos Sci, 34(1):95-104.
[23]李京校, 郭凤霞, 沈永海, 等.2013.利用SAFIR资料对北京及其周边地区地闪参数的特征分析[J].高原气象, 32(5):1450-1459.Li Jiaojing, Guo Fengxia, Shen Yonghai.2013.Characteristics analyses on cloud-to-ground lightning parameters over Beijing and its surrounding areas based on SAFIR data[J].Plateau Meteor, 32(5):1450-1459.DOI:10.7522/j.issn.1000-0534.2012.00135.
[24]沈永海, 苏德斌, 刘锦丽, 等.2010.北京夏季强雷暴降水回波结构与闪电特征个例分析[J].大气科学学报, 33(5):582-592.Shen Yonghai, Su Debin, Liu Jinli, et al.2010.Case study of the structures of radar precipitation echo and the features of lightning in thunderstroms over Beijing in summer[J].Trans Atmo Sci, 33(2):582-592.
[25]石玉恒, 张义军, 郑栋, 等.2012.北京地区雷暴的雷达回波特征与闪电活动的相关关系[J].气象, 38(1):66-71.Shi Yuheng, Zhang Yijun, Zheng Dong, et al.2012.The relationship between lightning activity and radar echo characteristics of thunderstorm in Beijing area[J].Meteor Mon, 38(1):66-71.
[26]谭涌波, 梁忠武, 师正, 等.2015.空间电荷分布特征对云闪传播行为的影响[J].高原气象, 34(5):1502-1510.Tan Yongbo, Liang Zhongwu, Shi Zheng, et al.2015.Effect of distribution characteristic of space charge on propagation behavior of intra-cloud lightning discharge[J].Plateau Meteor, 34(5):1502-1510.DOI:10.7522/j.issn.1000-0534.2014.00064.
[27]武智君, 郄秀书, 王东方, 等.2013.大兴安岭林区负地闪电荷源的反演[J].气象学报, 71(4):783-796.Wu Zhijun, Qie Xiushu, Wang Dongfang, et al.2013.Retrieval of the charge sources neutralized by negative cloud-to-ground lightning flashes in the Daxing'anling Forest region[J].Acta Meteor Sinica, 71(4):783-796.
[28]杨丽丽, 杨毅, 张廷龙, 等.2015.基于双多普勒雷达及闪电资料分析一次强降水过程[J].高原气象, 34(2):546-555.Yang Lili, Yang Yi, Zhang Tinglong, et al.2015.Analyzing a heavy rainfall process based on dual-doppler radar and lightning data[J].Plateau Meteor, 34(2):546-555.DOI:10.7522/j.issn.1000-0534.2014.00006.
[29]张廷龙, 郄秀书, 袁铁, 等.2008.中国内陆高原地区典型雷暴过程的地闪特征及电荷结构反演[J].大气科学, 32(5):1221-1227.Zhang Tinglong, Qie Xiushu, Yuan Tie, et al.2008.The characteristics of cloud-to-ground lightning flashes and charge structure of a typical thunderstorm in Chinese inland plateau[J].Chinese J Atmos Sci, 32(5):1221-1227.
[30]张荣, 张广庶, 王彦辉, 等.2013.青藏高原东北部地区闪电特征初步分析[J].高原气象, 32(3):673-681.Zhang Rong, Zhang Guangshu, Wang Yanhui, et al.2013.Preliminary analyses on some characteristics of flashes in northeastern Qinghai-Xizhang Plateau[J].Plateau Meteor, 32(3):673-681.DOI:10.7522/j.issn.1000-0534.2013.00083.
Outlines

/