Evaluation and Projections of Permafrost on the Qinghai-Xizang Plateau by CMIP5 Coupled Climate Models

  • CHANG Yan ,
  • LYU Shihua ,
  • LUO Siqiong ,
  • WU Jing ,
  • LI Ruiqing ,
  • LI Suosuo
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;Lanzhou Central Meteorological Observatory, Lanzhou 730020, China;Inner Mongolia Autonomous Regional Meteorological Observatory, Hohhot 010051, China

Received date: 2015-04-22

  Online published: 2016-10-28

Abstract

As an important forcing factor of the land surface, permafrost is very sensitive indicator of climate change. The freeze-thaw process is directly involved in local energy and water cycles, and in turn affects weather and climate. In this study, using the multi-model results from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), we computed the near-surface permafrost area on the Qinghai-Xizang Plateau (QXP) via surface frost index (SFI) method, and assessed the ability of models to simulate the related climate variables and present-day (1986-2005) permafrost, by comparing with the reanalysis products and the frozen soil map of the QXP. Based on this assessment, the climate models were aggregated by arithmetic mean to project the changes of permafrost on the QXP under the four different Representative Concentration Pathways (RCPs). The results show that the CMIP5 coupled models have some simulation capabilities for permafrost on the QXP. The simulated present-day near surface permafrost distribution is similar to the plateau frozen soil map, with the annual average of permafrost area of 127.5×104 km2 (1986-2005). The prediction results by multi-model ensemble mean indicate that the permafrost appear a degradation tendency on the QXP, especially on the eastern, southern and the edges of northern plateau. The permafrost will shrink from the edges to the north-west inner part of the QXP, and most probably exist only in the northwestern regions by 2099. Using the SFI method, the rate of the permafrost area change under RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios are-2.2×104 km2·(10a)-1, -5.9×104 km2·(10a)-1, -5.4×104 km2·(10a)-1 and -10.0×104 km2·(10a)-1, respectively. In the next 50 years, the permafrost area will decrease about 23.9×104 km2 (20.8%), 33.5×104 km2 (27.7%), 25.6×104 km2 (21.1%) and 43.5×104 km2 (35.3%) under RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. The average values of permafrost area in the last period of 21st century are about 91.4×104 km2 (RCP2.6), 70.9×104 km2 (RCP4.5), 72.8×104 km2 (RCP6.0) and 41.7×104 km2 (RCP8.5). Although there are large ranges in degree of degradation for different scenarios, the linearity of relationship exist between the permafrost area and the surface air temperature.

Cite this article

CHANG Yan , LYU Shihua , LUO Siqiong , WU Jing , LI Ruiqing , LI Suosuo . Evaluation and Projections of Permafrost on the Qinghai-Xizang Plateau by CMIP5 Coupled Climate Models[J]. Plateau Meteorology, 2016 , 35(5) : 1157 -1168 . DOI: 10.7522/j.issn.1000-0534.2015.00090

References

[1]Anisimov O A, Nelson F E.1996.Permafrost distribution in the Northern Hemisphere under scenarios of climatic change[J].Global and Planetary Change, 14(1):59-72.
[2]Cheng G D, Wu T H.2007.Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J].J Geophys Res, 112(F2):F02S03.DOI:10.1029/2 006JF000631.
[3]Cheng G D.1999.Glaciology and geocryology of China during the past 40 years:progress and prospects[J].Journal of Glaciology and Geocryology, 21(4):289-309.
[4]Guo D L, Wang H J.2011.The significant climate warming in the northern Tibetan Plateau and its possible causes[J].Int J Climatol, 32(12):1775-1781.
[5]Guo D L, Wang H J.2012.A projection of permafrost degradation on the Tibetan Plateau during the 21<sup>st</sup> century[J].J Geophys Res, 117(D5):214-221.
[6]IPCC.Summary for Policymakers[M]// Stocker T F, Qin D, Plattner G K, et al.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the 15<sup>th</sup> Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press, 1-27.
[7]Li X, Cheng G D.1999.A GIS aided response model of high altitude permafrost to global change[J].Science in China (Series D), 42(1):72-79.
[8]Liu X D, Chen B D.2000.Climate warming in the Tibetan Plateau during recent decades[J].Int J Climatol, 20(14):1729-1742.
[9]Nan Z T, Li S X, Cheng G D.2005.Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J].Science in China (Series D), 48(6):797-804.
[10]Nelson F E, Outcalt S I.1987.A computational method for prediction and regionalization of permafrost[J].Arctic and Alpine Reasearch, 19(3):279-288.
[11]Pavlov A V.1994.Current change of climate and permafrost in the Arctic and Sub-Arctic of Russia[J].Permafrost and Periglacial Processes, 5(2):101-110.
[12]Ran Y H, Li X, Cheng G D, et al.2012.Short communication distribution of permafrost in China:An overview of existing permafrost maps[J].Permafrost and Periglacial Processes, 23(3):322-333.
[13]Taylor K E, Stouffer R J, Meehl G A.2012.An overview of CMIP5 and the experiment design[J].Bull Amer Meteor Soc, 93(4):485-498.
[14]Wang C H, Cheng G D, Deng A J, et al.2008.Numerical simulation on climate effects of freezing-thawing processes using CCM3[J].Sciences in Cold and Arid Regions, (1):68-79.
[15]Wang S L, Jin H J, Li S X, et al.2000.Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts[J].Permafrost and Periglacial Processes, 11(1):43-53.
[16]Wu Q B, Li X, Li W J.2000.The prediction of permafrost change along the Qinghai-Tibet highway, China[J].Permafrost and Periglacial Processes, 11(4):371-376.
[17]Wu Q B, Zhang T J, Liu Y Z.2010.Permafrost temperatures and thickness on the Qinghai-Tibet Plateau[J].Global and Planetary Change, 72(1-2):32-38.
[18]Wu Q B, Zhang T J.2010.Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J].J Geophys Res, 115(D9):736-744.
[19]Xu C H, Xu Y.2012a.The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble[J].Atmos Ocean Sci Lett, 5(6):527-533.
[20]Xu Y, Gao X J, Shen Y, et al.2009.A daily temperature dataset over China and its application in validating a RCM simulation[J].Adv Atmos Sci, 26(4):763-772.
[21]Xu Y, Xu C H.2012b.Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J].Atmos Ocean Sci Lett, 5(6):489-494.
[22]Yang M X, Yao T D, Gou X H, et al.2007.Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau[J].Chinese Sci Bull, 52(1):136-139.
[23]Yao T D, Thompson L, Yang W, et al.2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J].Nature Climate Change, 2(9):663-667.
[24]Yao T D, Wang Y Q, Liu S Y, et al.2005.Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J].Science in China (Series D), 47(12):1065-1075.
[25]Chen Boli, Luo Siqiong, Lü Shiha, et al.2014.Sumulation and improvement of Soil temperature and moisture at Zoige Station in source region of the Yellow River during freezing and thawing[J].Plateau Meteor, 33(2):337-345.DOI:10.7522/j.issn.1000-0534.2013.00085.<br/>陈渤黎, 罗斯琼, 吕世华, 等.2014.黄河源区若尔盖站冻融期土壤温、湿度的模拟与改进[J].高原气象, 33(2):337-345.
[26]Chen Boli, Lü Shihua, Luo Siqiong.2012.Simulation analysis on land surface process at Maqu station in the Qinghai-Xizang Plateau using community land model[J].Plateau Meteor, 31(6):1511-1522.<br/>陈渤黎, 吕世华, 罗斯琼.2012.CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J].高原气象, 31(6):1511-1522.
[27]Ge Jun, Yu Ye, Li Zhenchao, et al.2016.Impacts of freeze/thaw processes on land surface energy fluxes in the permafrost region of Qinghai-Xizang Plateau[J].Plateau Meteor, 35(3):608-620.DOI:10.7522/j.issn.1000-0534.2016.00032.<br/>葛骏, 余晔, 李振朝, 等.2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象, 35(3):608-620.
[28]Jiang Dabang, Tian Zhiping.2013.East Asian monsoon change for the 21st century:results of CMIP3 and CMIP5 models[J].Chinese Sci Bull, 58(12):707-716.<br/>姜大膀, 田芝平.2013.21世纪东亚季风变化:CMIP3和CMIP5模式预估结果[J].科学通报, 58(8):707-716.
[29]Li Qian, Sun Shufen.2007.Development of the universal and simplified soil model coupling heat and water transport[J].Science in China (Series D), 37(11):1522-1535.<br/>李倩, 孙菽芬.2007.通用的土壤水热传输耦合模型的发展和改进研究[J].中国科学:D辑, 37(11):1522-1535.
[30]Li Shude, Cheng Guodong.1996.Map of permafrost distribution on the Qinghai-Xizang (Tibetan) Plateau[M].Lanzhou:Gansu Cultural Press.<br/>李树德, 程国栋.1996.青藏高原冻土图[M].兰州:甘肃文化出版社.
[31]Li Zhenchao, Wei Zhigang, Lü Shihua, et al.2013.Verfications of surface air temperature and precipitation from CMIP5 model in Northern Hemisphere and Qinghai-Xizang Plateau[J].Plateau Meteor, 32(4):921-928.<br/>李振朝, 韦志刚, 吕世华, 等.2013.CMIP5部分模式气温和降水模拟结果在北半球及青藏高原的检验[J].高原气象, 32(4):921-928.
[32]Luo Siqiong, Lü Shihua, Zhang Yu, et al.2008.Simulation analysis on land surface process of BJ site of central Tibetan Plateau using Colm[J].Plateau Meteor, 27(2):259-271.<br/>罗斯琼, 吕世华, 张宇, 等.2008.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 27(2):259-271.
[33]Luo Siqiong, Lü Shihua, Zhang Yu, et al.2009.Soil thermal conductivity parameterization establishment and application in numerical model of central Tibetan Plateau[J].Chinese J Geophys, 52(4):919-928.<br/>罗斯琼, 吕世华, 张宇, 等.2009.青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J].地球物理学报, 52(4):919-928.
[34]Qin Dahe.2002.Assessment on environmental change in West China[M].Beijing:Science Press.<br/>秦大河.2002.中国西部环境演变评估综合卷[M].北京, 科学出版社.
[35]Qin Yanhui, Wu Tonghua, Li Ren, et al.2015.Application of ERA product of land surface temperature in permafrost regions of Qinghai-Xizang Plateau[J].Plateau Meteor, 34(3):666-675.DOI:10.7522/j.issn.1000-0534.2014.00151.<br/>秦艳慧, 吴通华, 李韧, 等.2015.ERA-Interim地表温度资料在青藏高原多年冻土区的适用性[J].高原气象, 34(3):666-675.
[36]Wang Chenghai, Dong Wenjie, Wei Zhigang.2002.The development of study on the soil freezing-thaw process in land surface model[J].Adv Earth Sci, 17(1):44-52.<br/>王澄海, 董文杰, 韦志刚.2002.陆面模式中土壤冻融过程参数化研究进展[J].地球科学进展, 17(1):44-52.
[37]Wang Chenghai, Dong Wenjie, Wei Zhigang.2003.Study on relationship between the frozen-thaw process in Qinghai-Xizang Plateau and circulation in East-Asia[J].Chinese J Geophys, 46(3):310-312.<br/>王澄海, 董文杰, 韦志刚.2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报, 46(3):310-312.
[38]Wang Chenghai, Jin Shuanglong, Shi Hongxia.2014. Area change of the frozen ground in China in the next 50 years[J].Journal of Glaciology and Geocryology, 36(2):1-8.<br/>王澄海, 靳双龙, 施红霞.2014.未来50 a中国地区冻土面积分布变化[J].冰川冻土, 36(2):1-8.
[39]Wang Shaoling.1997.Study of permafrost degradation in the Qinghai-Xizang Plateau[J].Adv Earth Sci, 12(2):164-167.<br/>王绍令.1997.青藏高原冻土退化的研究[J].地球科学进展, 12(2):164-167.
[40]Wen Xinyu, Wang Shaowu, Zhu Jinhong, et al.2006.An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data[J].Chinese J Atmos Sci, 30(5):894-904.<br/>闻新宇, 王绍武, 朱锦红, 等.2006.英国CRU高分辨格点资料揭示的20世纪中国气候变化[J].大气科学, 30(5):894-904.
[41]Wu Jia, Gao Xuejie.2013.A gridded daily observation dataset over China region and comparison with the other datasets[J].Chinese J Geophys, 56(4):1102-1111.<br/>吴佳, 高学杰.2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报, 56(4):1102-1111.
[42]Wu Tonghua.2005.A study on response of permafrost to global climate change in Qinghai-Tibetan Plateau[D].Beijing:Graduate University of Chinese Academy of Sciences.<br/>吴通华.2005.青藏高原多年冻土对气候变化的响应研究[D].北京:中国科学院研究生院.
[43]Zhang Cunjie, Li Dongliang, Wang Xiaoping.2004.Study on precipitation variability in last 100 years and trend prediction in Northeast Asia in future 10-15 years[J].Plateau Meteor, 23(6):919-929.<br/>张存杰, 李栋梁, 王小平.2004.东北亚近100年降水变化及未来10-15年预测研究[J].高原气象, 23(6):919-929.
[44]Zhang Yu, Song Minhong, Lü Shihua, et al.2003.Frozen soil parameterization scheme coupled with mesoscale model[J].Journal of Glaciology and Geocryology, 25(5):541-546.<br/>张宇, 宋敏红, 吕世华, 等.2003.冻土过程参数化方案与中尺度大气模式的耦合[J].冰川冻土, 25(5):541-546.
[45]Zhao Lin.2004.The freezing-thawing processes of active layer and changes of seasonally frozen ground on the Tibetan Plateau[D].Beijing:Graduate University of Chinese Academy of Sciences.<br/>赵林.2004.青藏高原多年冻土活动层的冻融过程以及季节冻土的变化[D].北京:中国科学院研究生院.
[46]Zhou Youwu, Guo Dongxin.1982.Principal characteristics of permafrost in China[J].Journal of Glaciology and Geocryology, 4(1):1-19.<br/>周幼吾, 郭东信.1982.我国多年冻土的主要特征[J].冰川冻土, 4(1):1-19.
Outlines

/