Analysis on Contribution of Edge Conglutination between Particles in Cloud to Radar Brightness Band

  • WANG Meng ,
  • WANG Zhenhui ,
  • WANG Yun ,
  • DONG Huijie
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster CMA Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing 210044, China;School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China;College of Atmospheric Science, Nanjing University of Information Science & Technology, Nanjing 210044, China

Received date: 2015-01-24

  Online published: 2016-10-28

Abstract

Taking two small, spherical particles for example, the backscattering cross-section as a whole during the stage of edge conglutination between them would be greatest as compared with that before they contact with each other and that after they fuse and coalesce into a single spherical particle, especially the conglutination and coalescence process starts from two small, spherical ice particles. The paper studies the contribution of this phenomenon to radar bright band. DDA is used to calculate DDA, the backscattering cross-section of the edge-conglutinated particles. It has been found that DDA in case the conglutination is along the direction of radar wave polarization may be 1.5 times greater than mie, the backscattering cross-section of the equal volume, spherical particle at a certain size though the ratio may decrease to even less than 1 and fluctuate as the particle size increases because of resonance for large particles. Introducing'probability of edge conglutination'as a parameter to depict the effect of edge conglutination and applying the parameter into simulating radar bright band, it has been shown that, for a normal intense cloud echo such as 5874 mm6·m-3 (37.69 dBZ), radar reflectivity factor can increase by 2.57 times in case the conglutination percentage=33%, increase by 3.29 times in case p=50%, and increase by 5.59 times in case p=100%, respectively, while the increase is only increase by 2.40 times if the conglutination is not considered. Therefore, conglutination on the edge of two spherical particles along radar wave polarization direction can effectively increase the radar reflectivity factor and greatly benefit the formation of bright band.

Cite this article

WANG Meng , WANG Zhenhui , WANG Yun , DONG Huijie . Analysis on Contribution of Edge Conglutination between Particles in Cloud to Radar Brightness Band[J]. Plateau Meteorology, 2016 , 35(5) : 1401 -1408 . DOI: 10.7522/j.issn.1000-0534.2015.00054

References

[1]Atlas D.1957.Drop size and radar structure of a precipitation streamer[J].J Meteor, 14(3):261-271.
[2]Draine B T.1988.The discrete-dipole approximation and its application to interstellar graphite grains[J].The Astrophysical Journal, 333(2):848-872.
[3]Draine B T.1999.The discrete dipole approximation for light scattering by irregular targets, in:Light Scattering by Nonspherical Particles Theory, Measurements, and Applications[M].New York:Academic Press, 131-145.
[4]Draine B T, Goodman J.1993.Beyond clausius-mossotti-wave propagation on a polarizable point lattice and the discrete dipole approximation[J].The Astrophysical Journal, 405(2):685-697.
[5]Draine B T, Flatau P J.1994.Discrete-dipole approximation for scattering calculations[J].Journal of the Optical Society of America A, 11(4):1491-1499.
[6]Fabry F, Zawadzki I.1995.Long-term radar observations of the melting layer of precipitation and their interpretation[J].J Atmos Sci, 52(7):838-851.
[7]Fabry F, Szyrmer W.1999.Modeling of the melting layer.Part II:electromagnetic[J].J Atmos Sci, 56(20):3593-3600.
[8]Goodman J J, Draine B T, Flatau P J.1991.Application of fast-fourier-transform techniques to the discrete-dipole approximation[J].Optics Letters, 16(15):1198-1200.
[9]Klaassen W.1988.Radar observations and simulation of the melting layer of precipitation[J].J Atmos Sci, 45(24):3741-3753.
[10]Locatelli J D, Hobbs P V.1974.Fall speeds and masses of solid precipitation particles[J].Journal of Geophysical Research Atmospheres, 79(15):2185-2197.
[11]Olson W S, Bauer P, Viltard N F, et al.2001.A melting-layer model for passive/active microwave remote sensing applications.Part I:model formulation and comparison with observations[J].J Appl Meteor, 40(7):1145-1163.
[12]Purcell E M, Pennypacker C R.1973.Scattering and absorption of light by nonspherical dielectric grains[J].The Astrophysical Journal, 186(2):705-714.
[13]Szyrmer W, Zawadzki I.1999.Modeling of the melting layer.Part I:dynamics and microphysics[J].J Atmos Sci, 56(20):3573-3592.
[14]Wang Z, Dong H, Ji L, et al.2011.Generation of the radar bright band and its stimulation analysis: effection of the complex refractive index and raindrops final velocity[C]//Natural Computation (ICNC), 2011 Seventh International Conference on.IEEE, 2091-2095.
[15]Cao Junwu, Liu Liping Chen Xiaohui, et al.2006.Data quality analysis of 3836 C-band dual-linear polarimetric weather radar and its observation of a rainfall process[J].Chinese J Appl Meteor Sci, 17(2):192-200.<br/>曹俊武, 刘黎平, 陈晓辉, 等.2006.3836C波段双线偏振多普勒雷达及其在一次降水过程中的应用研究[J].应用气象学报, 17(2):192-200.
[16]Chen Wankui, You Laiguang.1987.A case study on microphysical characteristics of precipitation particles near the melting layer[J].Chinese J Appl Meteor Sci, 2(2):143-150.<br/>陈万奎, 游来光.1987.融化层附近降水粒子微物理特征的个例分析[J].应用气象学报, 2(2):143-150.
[17]Cheng Zhoujie, Liu Xianxun, Zhu Yaping.2009.A process of hydrometeor phase change with dual-polarimetric radar[J].J Appl Meteor Sci, 20(5):594-600.<br/>程周杰, 刘宪勋, 朱亚平.2009.双偏振雷达对一次水凝物相态演变过程的分析[J].应用气象报, 20(5):594-600.
[18]Dong Huijie, Wang Zhenhui, Ji Lei, et al.2013.Simulation experiments on characteristics of radar bright band based on SimRAD[J].Chinese J Trop Meteor, 29(1):136-142.<br/>董慧杰, 王振会, 纪雷, 等.2013.基于SimRAD平台的零度层亮带的模拟实验[J].热带气象学报, 29(1):136-142.
[19]Gu Zhenchao.1980.Fundmentals of cloud, fog and precipitation physics [M].Beijing:Science Press, 1173-177.<br/>顾震潮.1980.云雾降水物理物理基础[M].北京:科学出版社, 173-177.
[20]Hu Zhaoxia, Lei Hengchi, Guo Xueliang, et al.2007.Studies of the structure of a stratiform cloud and the physical processes of precipitation formation[J].Chinese J Atmos Sci, 31(3):425-439.<br/>胡朝霞, 雷恒池, 郭学良, 等.2007.降水性层状云系结构和降水过程的观测个例与模拟研究[J].大气科学, 31(3):425-439.
[21]JI Lei, Wang Zhenhui, Teng Xu, et al.2012.Software platform design and implementation of airborne radar sounding and data simulation[J].Chinese J Trop Meteor, 28(4):557-563.<br/>纪雷, 王振会, 黄兴友, 等.2012.机载雷达探测数据仿真平台设计与实验[J].热带气象学报, 28(4):557-563.
[22]Liu Hongyan, Lei hengchi.2006.Characteristics of rain from stratiform versus convective cloud based on the surface raindrop data[J].Chinese J Atmos Sci, 30(4):693-702.<br/>刘红燕, 雷恒池.2006.基于地面雨滴谱资料分析层状云和对流云降水的特征[J].大气科学, 30(4):693-702.
[23]Liu Liping, Zhou Miao.2016.Characteristics of bright band and automatic detection algorithm with vertical pointed Ka band cloud radar[J].Plateau Meteor, 35(3):734-744.DOI:10.7522/j.issn.1000-0534.2014.00160.<br/>刘黎平, 周淼.2016.垂直指向的Ka波段云雷达观测的0℃层亮带自动识别及亮带的特征分析[J].高原气象, 35(3):734-744.
[24]Sheng Peixuan, Mao Jietai, Li Jianguo, et al.2003.Atmospheric physics[M].Beijing:Peking University Press, 298-299.<br/>盛裴轩, 毛节泰, 李建国, 等.2003.大气物理学[M].北京:北京大学出版社, 298-299.
[25]Shi Guangyu.2007.Atmospheric radiation[M].Beijing:Science Press, 134-141.<br/>石广玉.2007.大气辐射学[M].北京:科学出版社, 134-141.
[26]Sun Kefu, You Laiguang.1965.Ice and snow crystals of the stratiform prepitation cloud in the Jilin area during april to June in 1963[J].Acta Meteor Sinica, 35(3):265-272.<br/>孙可富, 游来光.1965.1963年4-6月吉林地区降水性层状冷云中的冰晶与雪晶[J].气象学报, 35(3):265-272.
[27]Wang Liwei, Zhang Mingjun, Gao Feng.2014.Variation of 0℃ atmospheric height in the headwaters of Changjiang River in summer during 1977-2010[J].Plateau Meteor, 33(3):769-774.DOI:10.7522/j.issn.1000-0534.2014.00048.<br/>王立伟, 张明军, 高峰.2014.1977-2010年长江源区夏季大气0℃层高度变化[J].高原气象, 33(3):769-774.
[28]Xiao Yanjiao, Liu Liping, Li Zhonghua, et al.2010.Automatic recognition and removal of the bright band using radar reflectivity data[J].Plateau Meteor, 29(1):197-205.<br/>肖艳姣, 刘黎平, 李中华, 等.2010.雷达反射率因子数据中的亮带自动识别和抑制[J].高原气象, 29(1):197-205.
[29]Yang Jiefan, Lei Hengchi, Hu Zhaoxia.2010.Simulation of the stratiform cloud precipitation microphysical mechanism with the numerical model[J].Chinese J Atmos Sci, 34 (2):275-289.<br/>杨洁帆, 雷恒池, 胡朝霞.2010.一次层状云降水过程微物理机制的数值模拟研究[J].大气科学, 34(2):275-289.
[30]Zhang Peichang, Du Binyu, Dai Tiepi.2001.Radar meteorology [M].Beijing:China Meteorological Press, 9-20, 306-309.<br/>张培昌, 杜秉玉, 戴铁丕.2001.雷达气象学[M].北京:气象出版社, 9-20, 306-309.
[31]Zhang Peichang, Wang Zhenhui.1995.Microwave remote sensing of atmosphere[M].Beijing:China Meterologyical Press, 1-36, 130-156.<br/>张培昌, 王振会.1995.大气微波遥感基础[M].北京:气象出版社, 1-36, 130-156.
Outlines

/