The influence of the initial uncertainties on the NWP forecasts over the Tibetan Plateau (TP) and adjacent regions was studied based on the GFS forecasts/WRF model and OSSE experiments. The result shows that:(1) The large uncertainties of Tibetan Plateau (TP), because of the scarcely observations and complex terrain, can affect the NWP forecasts over the TP region and decrease the forecast skill of the downstream region of TP. After comparing the forecast errors over the TP and the downstream regions, it is found that the errors over the TP region are larger than the errors over the TP adjacent/Pacific Ocean and Rocky Mountain regions on the first 24 hours' integration:the error amplification rate over the TP adjacent region are larger than other regions evidently. (2) The forecast error rise faster over the downstream of TP region than the downstream of the Rocky Mountain (US). The WRF model forecasts results, with/without the large terrain (TP/Rocky Mountain), indicate that the forecast errors over the downstream region of the TP/Rocky Mountain are larger if the model domain contains the large terrain areas:this error divergence significantly after 2-days integration. (3) The observation data over TP region have effect on the forecasts of the downstream areas:additional "synthetic" observation data can decrease the initial uncertainties over the TP region and then improve the forecast skills over the downstream of TP region. Therefore, this study suggests that in order to reduce the initial uncertainties influence over the TP region, the additional observations even the "synthetic" observations over the TP region could assimilated to the NWP model.
ZHANG Yu
,
CHEN Dehui
,
ZHONG Jiqin
. The Numerical Prediction Uncertainties of the Tibetan Plateau Impacting the Forecasts of Its Downsteam Region[J]. Plateau Meteorology, 2016
, 35(6)
: 1430
-1440
.
DOI: 10.7522/j.issn.1000-0534.2015.00110
[1]?Arnold C J, Dey C. 1986. Observing-system simulation experiments:past, present, and future[J]. Bull Amer Meteor Soc, 67:687-695.
[2]Chen Lianshou, Luo Zhexian. 2003. A preliminary study of the dynamicsof eastward shifting cyclonic vortices[J]. Adv Atmos Sci, 20(3):323-332.
[3]Danforth C M, Eugenia K, Takemasa M. 2007. Estimating and correcting global weather model error[J]. Mon Wea Rev, 135(2):281-299.
[4]Davies H C, Marco D. 2013. Diagnosis and dynamics of forecast error growth[J]. Mon Wea Rev, 141(7):2483-2501.
[5]Errico R M, Yang R, Prive N, et al. 2013. Development and validation of observing-system simulation experiments at NASA's Global Modeling and Assimilation Office[J]. Q J Roy Meteor Soc, 139(674):1162-1178.
[6]Langland R H, Melvyn A S, Ronald G. 2002. Initial condition sensitivity and error growth in forecasts of the 25 January 2000 east coast snowstorm[J]. Mon Wea Rev, 130(4):957-974.
[7]MaYaoming, Kang Shichang, Zhu Liping, et al. 2008. Roof of the world:Tibetan observation and research platform[J]. Bull Amer Meteor Soc, 89(10):1487-1492.
[8]Massimo B, Sam B S. 2004. The role of the Himalayas and the Tibetan Plateau within the Asian monsoon system[J]. Bull Amer Meteor Soc, 85(7):1001-1004.
[9]Prive N C, Xie Y, Woollen J S, et al. 2013. Evaluation of the earth systems research laboratory's global observing system simulation experiment system[J]. Tellus A, 65:19011.
[10]QieXiushu, Xueke Wu, Tie Yuan, et al. 2014. Comprehensive pattern of deep convective systems over the Tibetan Plateau-south Asian monsoon region based on TRMM Data[J]. J Climate, 27(17):6612-6626.
[11]Szunyogh I, Toth Z, Zimin A, et al. 2002. On the propagation of the effect of targeted observations:The 2000 Winter Storm Reconnaissance Program[J]. Mon Wea Rev, 130:1144-1165.
[12]Xu Xiangde, Qiuju Miao, Jizhi Wang, et al. 2003. The water transportmodel at the regional boundary during the meiyu period[J]. AdvAtmos Sci, 20(3):333-342.
[13]Xu Xiangde, Zhang Renhe, Toshio K, et al. 2008. A new integrated observational system overthe Tibetan Plateau[J]. Bull Amer Meteor Soc, 89(10):1492-1496.
[14]Zhang Guangzhi, Xu Xiangde, Wang Jizhi. 2003. A dynamic study of Ekman characteristics by using 1998 SCSMEX and TIPEX boundary layer data[J]. Adv Atmos Sci, 20(3):349-356.
[15]HeYu, Li Guoping. 2013. Numerical experiments on influence of Tibetan Plateau on persistent heavy rain in South China[J]. Chinese J Atmos Sci, 37 (4):933-944.<br/>何钰, 李国平. 2013. 青藏高原大地形对华南持续性暴雨影响的数值试验[J]. 大气科学, 37(4):933-944.
[16]Li Chuan, Chen Jing, He Guangbi. 2006. Impact of the steep terrain of eastern Qinghai-Xizang Plateau on the genesis and development of extreme heavy rainfall event[J]. Plateau Meteor, 37(4):442-450.<br/>李川, 陈静, 何光碧. 2006. 青藏高原东侧陡峭地形对一次强降水天气过程的影响[J]. 高原气象, 25(3):442-450.
[17]Li Yueqing, 2011. The observational basis of the 3rdTibetan Plateau atmospheric scientific experiment[J]. Plateau and Mountain Meteor Res, 27(3):77-82.<br/>李跃清. 2011. 第三次青藏高原大气科学试验的观测基础[J]. 高原山地气象研究, 31(3):77-82.
[18]Liang Ling, Li Yueqing, Hu Haoran, et al. 2013. Numerical study of influence of sensible heat anomalies in summer over Qinghai-Xizang Plateau on rainfall in Sichuan-Chongqing Regions[J]. Plateau Meteor, 32(6):1538-1545. DOI:10.7522/j. issn. 1000-0534.2013.00028.<br/>梁玲, 李跃清, 胡豪然, 等. 2013. 青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J]. 高原气象, 32(6):1538-1545.
[19]Liu Shikuo, Bai Jingyu, Xu Xiangde, et al. 2000. Dynamic and thermodynamic effects of the Tibetan Plateau and the low-frequency fluctuation[J]. J Appl Meteor Sci, 11(3):312-321.<br/>刘式适, 柏晶瑜, 徐祥德, 等. 2000. 青藏高原大地形的动力?热力作用与低频振荡[J]. 应用气象学报, 11(3):312-321.
[20]Tian Hongying, Tian Wenshou, Ge Jiali, et al. 2014. Characteristics of water vapor distribution and variation in upper troposphere and lower stratosphere over Qinghai-Xizang Plateau[J]. Plateau Meteor, 33(1):1-13. DOI:10.7522/j. issn. 1000-0534.2013.00074.<br/>田红瑛, 田文寿, 雒佳丽, 等. 2014. 青藏高原地区上对流层-下平流层区域水汽分布和变化特征[J]. 高原气象, 33(1):1-13.
[21]Wu Guoxiong, Liu Yimin, Liu Xin, et al. 2005. How the Heating over the Tibetan Plateau Affects the Asian Climate in Summer[J]. Chinese J Atmos Sci, 29(1):47-56.<br/>吴国雄, 刘屹岷, 刘新, 等. 2005. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学, 29:47-56.
[22]Xu Xiangde, Chen Lianshou. 2006. Advances of the study on Tibetan Plateau experiment of atmospheric Sciences[J]. J Appl Meteor Sci, 17(6):756-772.<br/>徐祥德, 陈联寿. 2006. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 17(6):756-772.
[23]Yu Shuhua, Gao Wenliang, Peng Jun. 2013. Statistical analysis of shearline activity in QXP and its influence on rainfall in China in recent 13 years[J]. Plateau Meteor., 32(6):1527-1537. DOI:10.7522/j. issn. 1000-0534.2012.00149.<br/>郁淑华, 高文良, 彭骏. 2013. 近13年青藏高原切变线活动及其对中国降水影响的若干统计[J]. 高原气象, 32(6):1527-1537.
[24]Zhou Yushu, Deng Difei. 2012:Analysis method of equivalent isobaric geopotential on σ coordinate and its application to a vortex in the Tibetan Plateau[J]. Chinese J Atmos Sci, 36(1):47-62.<br/>周玉淑, 邓涤菲. 2012. 等σ面相当重力位势分析方法及其对高原低涡个例的检验应用[J]. 大气科学, 36(1):47-62.
[25]Zhuo Ga, Xu Xiangde, Chen Lianshou. 2002. Dynamical effect of boundary layer characteristics of Tibetan Plateau on general circulation[J]. J Appl Meteor Sci, 13(2):163-169.<br/>卓嘎, 徐祥德, 陈联寿. 2002. 青藏高原边界层高度特征对大气环流动力学效应的数值试验[J]. 应用气象学报, 13(2):163-169.