Analysis and Application of the Two Type Vorticity Vectors on a Heavy Rainfall in Sichuan Basin

  • SONG Wenwen ,
  • LI Guoping
Expand
  • Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, China;School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China

Received date: 2015-06-19

  Online published: 2016-12-28

Abstract

By using the WRF model, NCEP 1°×1° reanalysis datasets and conventional observational data, numerical simulation and diagnostic analysis is performed for a heavy rainfall in Sichuan basin occurring during June 29th-July 2nd, 2013. The results showed the heavy rainfall was caused by the interaction of plateau vortex and southwest vortex, and the blocking effect formed by the west pacific subtropical high westward extension and stabilize in Sichuan Basin led to stagnate of plateau vortex and southwest vortex. WFR model can better simulate the affecting system, precipitation area and strength of the precipitation. θe analysis showed the heavy rainfall area was in the high temperature and high humidity area, and the lower level of the heavy rainfall area was convective instability area. Equivalent potential temperature was dense in the middle and upper level, and the isothermal surface of the equivalent potential temperature was steep. As the rainfall went on, the convective instability energy released, and the equivalent potential temperature declined. By using the convective vorticity vector (CVV) and moist vorticity vector (MVV), diagnostic analysis result of the heavy rainfall showed the vertical integration of the CVV and MVV vertical component and the trend of the positive cincture of the horizontal distribution was consistent with the precipitation area, and the maximum center could better correspond to the precipitation center. The distribution and development of the maximum area of the CVV and MVV vertical component was consistent with the movement and development of the precipitation area, the coincident positive distribution from low level to top level of the precipitation area was indicative to the heavy rainfall development. The CVV and MVV vertical component can well indicate the development and evolution of the heavy rainfall system in Sichuan Basin.

Cite this article

SONG Wenwen , LI Guoping . Analysis and Application of the Two Type Vorticity Vectors on a Heavy Rainfall in Sichuan Basin[J]. Plateau Meteorology, 2016 , 35(6) : 1464 -1475 . DOI: 10.7522/j.issn.1000-0534.2015.00115

References

[1]?Ertel H. 1942. Ein neuer hydrodynamischer Wirbelsatz. Met Z, 59:277-281.
[2]Gao S, Gui X, Zhou Y, et al. 2005. A modeling study of moist and dynamic vorticity vector associated with two-dimensional tropical convection[J]. J Geophys Res, 110:D17104, DOI:10.1029/2004JD005675.
[3]Gao S, Li X, Tao W, et al. 2007. Convective and moist vorticity vectors associated with tropical oceanic convection:A three-dimensional cloud-resolving model simulation[J]. J Geophys Res, 112:D01105, DOI:10.1029/2006JD007179.
[4]Rossby C G. 1939. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Marine Rev, 2(1):38-55.
[5]Rossby C G. 1940. Planetary flow patterns in the atmosphere. Quart J Roy Meteor Soc, 66(suppl):67-68.
[6]Zhao Yu, Wang Jianguo, Xue Deqiang. 2007. Application of the moist vorticity vector in the analysis of a heavy rainfall event in North China[J]. Progress in Natural Science, 17(12):1457-1465.
[7]Chen Zhongming. Min Wenbin, Miao Qiang, et al. 2004. A case study on coupling interaction between plateau and southwest vortexes[J]. Plateau Meteor, 23(1):76-80.<br/>陈忠明, 闵文彬, 缪强, 等. 2004. 高原涡与西南涡耦合作用的个例诊断[J]. 高原气象, 23(1):76-80.
[8]Huang Chuhui, Li Guoping. 2009. A case study of plateau vortex moving east ward with heavy rainfalls based on helicity and non-geostrophic wet Q-vector[J]. Plateau Meteor, 28(2):319-326.<br/>黄楚惠, 李国平. 2009. 基于螺旋度和非地转湿Q矢量的一次东移高原低涡强降水过程分析[J]. 高原气象, 28(2):319-326.
[9]He Guangbi, Gao Wenliang, Tu Nini. 2009. The dynamic diagnosis on easterwards moving characteristics and developing mechanism of two tibetan plateau vortex processes[J]. Acta Meteor Sinica, 67(4):599-612.<br/>何光碧, 高文良, 屠妮妮. 2009. 两次高原低涡东移特征及发展机制动力诊断[J]. 气象学报, 67(4):599-612.
[10]He Guangbi, Peng Jun, Tu Nini. 2015. Terrain construction and experiment for numerical model based on high resolution terrain data[J]. Plateau Meteor, 34(4):910-922.<br/>何光碧, 彭俊, 屠妮妮. 2015. 基于高分辨率地形数据的模式地形构造与数值试验[J]. 高原气象, 34(4):910-922.
[11]Jiang Lujun, Li Guoping, Mu Ling, et al. 2014. Structural analysis of heavy precipitation caused by southwest vortex based on TRMM data[J]. Plateau Meteor, 33(3):607-614.<br/>蒋璐君, 李国平, 母灵, 等. 2014. 基于TRMM资料的西南涡强降水结构分析[J]. 高原气象, 33(3):607-614.
[12]Li Guoping. 2013. Advances in tibetan plateau vortex and southwest vortex research and related scientific problems[J]. Desert and Oasis Meteorology, 7(3):1-6.<br/>李国平. 2013. 高原涡、西南涡研究的新进展及有关科学问题[J]. 沙漠与绿洲气象, 7(3):1-6.
[13]Liu Xiaoran, LiGuoping. 2014. Numerical simulation and potential vorticity diagnosis of an eastward moving southwest vortex[J]. Plateau Meteor, 33(5):1204-1216.<br/>刘晓冉, 李国平. 2014. 一次东移型西南低涡的数值模拟及位涡诊断[J]. 高原气象, 33(5):1204-1216.
[14]Tao Li, Li Guoping. 2012. Application of vertical component of convective vorticity vector to the diagnosis of a rainstorm brought by southwest vortex[J]. J Appl Meteor Sci, 23(6):702-709.<br/>陶丽, 李国平. 2012. 对流涡度矢量垂直分量在西南涡暴雨中的应用[J]. 应用气象学报, 23(6):702-709.
[15]Wu Guoxiong, Cai Yaping, Tang Xiaojing. 1995. Moist potential vorticity and slantwise vorticity development[J]. Acta Meteor Sinica, 53(4):387-404.<br/>吴国雄, 蔡雅萍, 唐晓菁. 1995. 湿位涡和倾斜涡度发展[J]. 气象学报, 53(4):387-404.
[16]Wang Xin, Li Yueqing, Yu Shuhua, et al. 2009. Statistical study on the plateau low vortex activities[J]. Plateau Meteor, 28(1):64-71.<br/>王鑫, 李跃清, 郁淑华, 等. 2009. 青藏高原低涡活动的统计研究[J]. 高原气象, 28(1):64-71.
[17]Wu Zhe, Fan Guangzhou, Zhou Dingwen, et al. 2014. Numerical simulation of the rainstorm process in Ya'an based on wrf model[J]. Plateau Meteor, 33(5):1332-1340. DOI:10.7522/j. issn. 1000-0534.2013.00084.<br/>吴泽, 范广洲, 周定文, 等. 2014. 基于WRF模式的雅安暴雨数值模拟研究[J]. 高原气象, 33(5):1332-1340.
[18]Yu Shuhua, Xiao Yuhua, Gao Wenliang. 2007. Cold air influence on the tibetan plateau vortex moving out of the plateau[J]. J Appl Meteor Sci, 18(6):737-746.<br/>郁淑华, 肖玉华, 高文良. 2007. 冷空气对高原低涡移出青藏高原的影响[J]. 应用气象学报, 18(6):737-746.
[19]Yu Bo, Lin Yonghui. 2008. A case study of southwest vortex causing heavy rainfall in eastern sichuan basin[J]. Atmos Sci, 32(1):141-154.<br/>于波, 林永辉. 2008. 引发川东暴雨的西南低涡演变特征个例分析[J]. 大气科学, 32(1):141-154.
[20]Zhao Yu, Gao Shouting. 2008. Application of the Convective Vorticity Vector to the Analysis of a Rainstorm[J]. Chinese J Atmos Sci, 32(3):444-456.<br/>赵宇, 高守亭. 2008. 对流涡度矢量在暴雨诊断分析中的应用研究[J]. 大气科学, 32(3):444-456.
[21]Zhao Yu, Cui Xiaopeng. 2009. Application of convective and moist vorticity vectors in the analysis of a heavy rainfall event[J]. Acta Meteor Sinica, 67(4):540-548.<br/>赵宇, 崔晓鹏. 2009. 对流涡度矢量和湿涡度矢量在暴雨诊断分析中的应用研究[J]. 气象学报, 67(4):540-548.
[22]Zhou Chunhua, Gu Qingyuan, He Guangbi. 2009. Diagnostic Analysis of Vorticity in a Heavy Rain Event under Interaction of Plateau Vortex and Southwest Vortex[J]. Meteor Sci Technol, 37(5):538-544.<br/>周春花, 顾清源, 何光碧. 2009. 高原涡与西南涡相互作用暴雨天气过程的诊断分析[J]. 气象科技, 37(5):538-544.
[23]Zhao Yuchun, Wang Yehong. 2010. A case study on plateau vortex inducing southwest vortex and producing extremely heavy rain[J]. Plateau Meteor, 29(4):819-831.<br/>赵玉春, 王叶红. 2010. 高原涡诱生西南涡特大暴雨成因的个例研究[J]. 高原气象, 29(4):819-831.
[24]Zhai Danhua, Liu De, Li Qiang, et al. 2014. Feature analysis of southwest vortex causing heavy rain in western and middle Chongqing[J]. Plateau Meteor, 33(1):140-147. DOI:10.7522/j. issn. 1000-0534.2012.00181.<br/>翟丹华, 刘德, 李强, 等. 2014. 引发重庆中西部暴雨的西南低涡特征分析[J]. 高原气象, 33(1):140-147.
[25]Zhou Miao, Liu Liping, Wang Hongyan. 2014. Analysis of the echo structure and its evolution as shown in a severe precipitation event caused by the plateau vortex and the southwest vortex[J]. Acta Meteor Sinica, 72(3):554-569.<br/>周淼, 刘黎平, 王红艳. 2014. 一次高原涡和西南涡作用下的强降水的回波结构和演变分析[J]. 气象学报, 72(3):554-569.
Outlines

/