Evaluation of CMIP5 Climate Models on Simulating the Amount and Frequency of Convective and Stratiform Precipitation in East Asia

  • SUN Yue ,
  • WU Tongwen ,
  • JIN Xia ,
  • Laurent Li
Expand
  • Chinese Academy of Meteorological Sciences, Beijing 100081, China;National Climate Centre, Beijing 100081, China;Laboratoire des sciences du climat et de l'environnement, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, 91191, France;Laboratoire de Météorologie Dynamique, Centre National de la Recherche Scientifique, Sorbonne Université, UPMC Univ Paris 06, Paris, 75005, France

Received date: 2015-07-03

  Online published: 2016-12-28

Abstract

Based on the hourly merged precipitation data and Tropical Rainfall Measuring Mission (TRMM) 3A25 monthly averaged precipitation data, the simulation performances about the total precipitation amount, amount and frequency of precipitation (both convective and stratiform) in East Asia in 19 coupled ocean-atmosphere climate models of CMIP5 have been assessed. Results indicate that:(1) All models can simulate the basic pattern of precipitation in East Asia, high-and medium-resolution models can simulate the main precipitation centers:southern slope of the Himalayas, Southern China and the adjacent ocean areas. But low-resolution models can hardly do so. Total precipitation amount in autumn and winter is better simulated than in other seasons. The spatial correlation coefficients of the total precipitation between the simulation and observation exceed 0.7 for autumn and winter, but only 0.50 and 0.61 for spring and summer. (2) According to TRMM, main convective precipitation centers lie over the Philippines, Bay of Bengal and southern of the Himalayas, while stratiform precipitation centers lie on the southern of the Himalayas, downstream of the Yangtze River, East China Sea and Bay of Bengal. As for simulations, high-and medium-resolution models are better than low-resolution models. By comparing the multi-model average with the TRMM data, convective precipitation amount is better simulated, but there are too little stratiform precipitations in the tropics. (3) As for the frequency of total precipitation in East Asia, results from 13 models exceed 60%. For the frequency of different precipitation intensities, the frequency located between 0.001~1 mm·h-1 is the highest in most of the models, while the frequency of intensity which is greater than 1.0 mm·h-1 is quite small. (4) For the stratiform precipitation frequency, high-and medium-resolution models are closer to the multi-model average, but for the convective precipitation, high-and medium-resolution models are not significantly better than low-resolution models. Therefore, the performance of high-and medium-resolution models is generally better than low-resolution models. Improving resolution of models is then necessary to improve their performance in simulating precipitation in East Asia.

Cite this article

SUN Yue , WU Tongwen , JIN Xia , Laurent Li . Evaluation of CMIP5 Climate Models on Simulating the Amount and Frequency of Convective and Stratiform Precipitation in East Asia[J]. Plateau Meteorology, 2016 , 35(6) : 1524 -1539 . DOI: 10.7522/j.issn.1000-0534.2015.00107

References

[1]Gao X, Xu Y, Zhao Z, et al. 2006. On the role of resolution and topography in the simulation of East Asia precipitation[J]. Theor Appl Climatol, 86(1-4):173-185.
[2]Huang D, Zhu J, Zhang Y, et al. 2013. Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models[J]. J Geophys Res:Atmospheres, 118(16):9035-9047.
[3]Kang I, Jin K, Wang B, et al. 2002. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs[J]. Climate Dyn, 19(5-6):383-395.
[4]Meneghini R. 1998. Application of a threshold method to airborne-spaceborne attenuating-wavelength radars for the estimation of space-time rain-rate statistics[J]. J Appl Meteor, 37(9):924-938.
[5]Rajendran K, Kitoh A, Yukimoto S. 2004. South and East Asian summer monsoon climate and variation in the MRI coupled model (MRI-CGCM2)[J]. J Climate, 17(4):763-782.
[6]Randall D A, Wood R A, Bony S, et al. 2007. Climate models and their evaluation. Climate change 2007:The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon S, Qin D[J]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[7]Shi H, Yu R, Li J, et al. 2009. Development of a regional climate model (CREM) and evaluation on its simulation of summer climate over eastern China[J]. 気象集誌. 第2輯, 87(3):381-401.
[8]Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design[J]. Bull Amer Meteor Soc, 93(4):485-498.
[9]Wang X, Bao Q, Liu K, et al. 2011. Features of rainfall and latent heating structure simulated by two convective parameterization schemes[J]. Sci China Earth Sci, 54(11):1779-1788.
[10]Xu Y, Gao X, Giorgi F. 2010. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections[J]. Climate Res, 41(1):61-81.
[11]Xu Y, Xu C. 2012. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J]. Atmos Ocean Sci Lett, 5(6):489-494.
[12]Yu R, Li W, Zhang X, et al. 2000. Climatic features related to eastern China summer rainfalls in the NCAR CCM3[J]. Adv Atmos Sci, 17(4):503-518.
[13]Zhou T, Wu B, Wang B. 2009. How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon?[J]. J Climate, 22(5):1159-1173.
[14]Chen Xiaochen, Xu Ying, Xu Chonghai, et al. 2014. Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Adv Climate Change Res, 10(3):217-225.<br/>陈晓晨, 徐影, 许崇海, 等. 2014. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 10(3):217-225.
[15]Du Zhencai, Huang Ronghui, Huang Gang, et al. 2011. The characteristics of spatial and temporal distributions of convective rainfall and stratiform rainfall in the Asian monsoon region and their possible mechanisms[J]. Chinese J Atmos Sci, 35(6):993-1008.<br/>杜振彩, 黄荣辉, 黄刚, 等. 2011. 亚洲季风区积云降水和层云降水时空分布特征及其可能成因分析[J]. 大气科学, 35(6):993-1008.
[16]Fu Yunfei, Feng Sha, Liu Peng, et al. 2010. The cumulonimbus incus in summer Asia as detected by the TRMM PR[J]. Acta Meteor Sinca, 68(2):195-206.<br/>傅云飞, 冯沙, 刘鹏, 等. 2010. 热带测雨卫星测雨雷达探测的亚洲夏季积雨云云砧[J]. 气象学报, 68(2):195-206.
[17]Fu Yunfei, Zhang Aimin, Liu Yong, et al. 2008. Characteristics of seasonal scale convective and stratiform precipitation in Asia based on measurements by TRMM Precipitation Radar[J]. Acta Meteor Sinica, 66(5):730-746.<br/>傅云飞, 张爱民, 刘勇, 等. 2008. 基于星载测雨雷达探测的亚洲对流和层云降水季尺度特征分析[J]. 气象学报, 66(5):730-746.
[18]Gao Xuejie, Xu Ying, Zhao Zongci, et al. 2006. Impacts of horizontal resolution and topography on the numerical simulation of East Asian Precipitation[J]. Chinese J Atmos Sci, 30(2):185-192.<br/>高学杰, 徐影, 赵宗慈, 等. 2006. 数值模式不同分辨率和地形对东亚降水模拟影响的试验[J]. 大气科学, 30(2):185-192.
[19]Hu Liang, Li Yaodong, Yang Song, et al. 2011. Seasonal variability in tropical and subtropical convective and stratiform precipitation of the East Asian monsoon[J]. Sci China Earth Sci, 41(8):1182-1191.<br/>胡亮, 李耀东, 杨松, 等. 2011. 东亚热带与副热带季风区对流降水和层云降水季节变化特征对比分析研究[J]. 中国科学:地球科学 (中文版), 41(8):1182-1191.
[20]Hu Qin, Jiang Dabang, Fan Guangzhou. 2014. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese J Atmos Sci, 38(5):924-938.<br/>胡芩, 姜大膀, 范广洲. 2014. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 38(5):924-938.
[21]Huang Ronghui, Zhou Liantong. 2002. Research on the characteristics, formation mechanism and prediction of severe climatic disasters in China[J]. Journal of Natural Disasters, 11(1):1-9.<br/>黄荣辉, 周连童. 2002. 我国重大气候灾害特征形成机理和预测研究[J]. 自然灾害学报, 11(1):1-9.
[22]Jiang Lujun, Li Guoping, Mu Ling, et al. 2014. Structural analysis of heavy precipitation caused by southwest vortex based on TRMM Data[J]. Plateau Meteor, 33(3):607-614. DOI:10.7522/j. issn. 1000-0534.2013.00094.<br/>蒋璐君, 李国平, 母灵, 等. 2014. 基于TRMM资料的西南涡强降水结构分析[J]. 高原气象, 33(3):607-614.
[23]Li Dian, Bai Aijuan, Huang Shengjun. 2012. Characteristic analysis of a severe convective weather over Tibetan Plateau Based on TRMM data[J]. Plateau Meteor, 31(2):304-311.<br/>李典, 白爱娟, 黄盛军. 2012. 利用TRMM卫星资料对青藏高原地区强对流天气特征分析[J]. 高原气象, 31(2):304-311.
[24]Liu Min, Jiang Zhihong. 2009. Simulation ability evaluation of surface temperature and precipitation by thirteen IPCC AR4 coupled climate models in China during 19612000[J]. J Nanjing Insti Meteor, 32(2):256-268.<br/>刘敏, 江志红. 2009.13个IPCC AR4模式对中国区域近40a气候模拟能力的评估[J]. 南京气象学院学报, 32(2):256-268.
[25]Liu Peng, Li Chongyin, Wang Yu, et al. 2012. Climatic characteristics of convective and stratiform precipitation over the Tropical and Subtropical areas as derived from TRMM PR[J]. Sci China Earth Sci, 42(9):1358-1369.<br/>刘鹏, 李崇银, 王雨, 等. 2012. 基于TRMM PR探测的热带及副热带对流和层云降水气候特征分析[J]. 中国科学:地球科学(中文版), 42(9):1358-1369.
[26]Li Zhenchao, Wei Zhigang, Lu Shihua, et al. 2013. Verifications of surface air temperature and precipitation from CMIP5 model in Northern Hemisphere and Qinghai-Xizang Plateau[J]. Plateau Meteor, 32(4):921-928. DOI:10.7522/j. issn. 1000-0534.2012.00088.<br/>李振朝, 韦志刚, 吕世华, 等. 2013. CMIP5部分模式气温和降水模拟结果在北半球及青藏高原的检验[J]. 高原气象, 32(4):921-928.
[27]Sun Ying, Ding Yihui. 2008. Validation of IPCC AR4 climate models in simulating interdecadal change of East Asian summer monsoon[J]. Acta Meteor Sinica, 66(5):765-780.<br/>孙颖, 丁一汇. 2008. IPCC AR4气候模式对东亚夏季风年代际变化的模拟性能评估[J]. 气象学报, 66(5):765-780.
[28]Shen Yan, Pan Yang, Yu Jingjing, et al. 2013. Quality assessment of hourly merged precipitation product over China[J]. Trans Atmos Sci, 36(1):37-46.<br/>沈艳, 潘旸, 宇婧婧, 等. 2013. 中国区域小时降水量融合产品的质量评估[J]. 大气科学学报, 36(1):37-46.
[29]Wang Shuyu, Xiong Zhe. 2004. The preliminary analysis of 5 coupled ocean-atmosphere global climate models simulation of regional climate in Asia[J]. Climatic Environ Res, 9(2):240-250.<br/>王淑瑜, 熊喆. 2004.5个海气耦合模式模拟东亚区域气候能力的初步分析[J]. 气候与环境研究, 9(2):240-250.
[30]Xu Chonghai, Luo Yong, Xu Ying. 2010. Assessment and projection for spatial-temporal distribution of precipitation in China based on global climate models[J]. Adv Climate Change Res, 6(6):398-404.<br/>许崇海, 罗勇, 徐影. 2010. 全球气候模式对中国降水分布时空特征的评估和预估[J]. 气候变化研究进展, 6(6):398-404.
[31]Xu Chonghai, Shen Xinyong, Xu Ying. 2007. An analysis of climate change in East Asia by using the IPCC AR4 simulations[J]. Adv Climate Change Res, 3(5):287-292.<br/>许崇海, 沈新勇, 徐影. 2007. IPCC AR4 模式对东亚地区气候模拟能力的分析[J]. 气候变化研究进展, 3(5):287-292.
[32]Yu Jingjing, Shen Yan, Pan Yang, et al. 2011. Bias adjustment of high spatial/temporal resolution satellite precipitation estimation relying on Gauge-Based precipitation over China[C]//2011 China meteorological society meteorological communication and information technology commission and national meteorological information center of science and technology conference papers, 465-475.<br/>宇婧婧, 沈艳, 潘旸, 等. 2011. 基于地面观测降水订正卫星反演降水系统误差(PDF)方法在中国地区的应用[C]//2011年中国气象学会气象通信与信息技术委员会暨国家气象信息中心科技年会论文摘要, 465-475.
[33]Zhang Fang, Dong Min, Wu Tongwen. 2014. Evaluation of the ENSO features simulations as done by the CMIP5 models[J]. Acta Meteor Sinca, 72(1):30-48.<br/>张芳, 董敏, 吴统文. 2014. CMIP5模式对ENSO现象的模拟能力评估[J]. 气象学报, 72(1):30-48.
[34]Zhang Li, Ding Yihui, Sun Ying. 2008. Evaluation of precipitation simulation in East Asian monsoon areas by coupled ocean-atmosphere general circulation models[J]. Chinese J Atmos Sci, 32(2):261-276.<br/>张莉, 丁一汇, 孙颖. 2008. 全球海气耦合模式对东亚季风降水模拟的检验[J]. 大气科学, 32(2):261-276.
[35]Zhang Qingyun, Tao Shiyan, Peng Jingbei. 2008. The studies of meteorological disasters over China[J]. Chinese J Atmos Sci, 32(4):815-825.<br/>张庆云, 陶诗言, 彭京备. 2008. 我国灾害性天气气候事件成因机理的研究进展[J]. 大气科学, 32(4):815-825.
Outlines

/